
© University of Colorado, 2010

Concurrent or Not
Concurrent?
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 6 — 01/28/2010

1

Lecture Goals

Review material in Chapter 1 and 2 of the Breshears
textbook

Threading Methodologies

Parallel Algorithms (Intro)

Shared-Memory vs. Distributed Memory Programming

Design Models for Concurrent Algorithms

Task Decomposition

Example

2

Threading Methodology

Breshears presents a threading methodology
First produce a tested single-threaded program

Use reqs./design/implement/test/tune/maintenance steps

Then to create a concurrent system from the former, do
Analysis: Find computations that are independent of each other

AND take up a large amount of serial execution time (80/20 rule)

Design and Implement: straightforward

Test for Correctness: Verify that concurrent code produces
correct output

Tune for performance: once correct, find ways to speed up

3

Note: does not recommend going straight to concurrency!

Performing Tuning

Tuning threaded code typically involves

identifying sources of contention on locks (synchronization)

identifying work imbalances across threads

reducing overhead

Testing and Tuning

Whenever you tune a threaded program, you must test it
again for correctness

Going back further: if you are unable to tune system
performance, you may have to re-design and re-implement

4

Parallel Algorithms (Intro)

In looking at the development of parallel algorithms, the
standard Von Neumann architecture is modified, from this

5

CPU

MemoryINPUT OUTPUT

Logical View

Parallel Algorithms (Intro)

to this

6

CPU

MemoryINPUT OUTPUT

Shared Bus

CPUCPU••• •••

Logical View
unlimited CPU
unlimited memory
bus details left
unspecified

Memory Access

What is specified, is the types of memory access allowed
by the threads running on the CPUs

Concurrent Read / Concurrent Write ; no restrictions

Concurrent Read / Exclusive Write

Exclusive Read / Concurrent Write

Exclusive Read / Exclusive Write

It is up to algorithm to enforce the chosen model including
how to resolve two or more writes to the same location

random or sum of values, for example

7

Number of CPUs

Typically specified in terms of N where N is tied to the input
in some way

As with single threaded algorithms, once you have the
specification for a parallel algorithm you must

figure out how to map it to your specific machine / language

8

Shared vs. Distributed

When building large, concurrent systems you will run into
issues of whether to use a distributed vs. shared memory
model

Due to issues related to the shared bus, a limit of 32
processors was hit in the early 90s for parallel computers
making use of shared memory algorithms

To address this and to scale concurrency to more processors,
distributed memory configurations were utilized

Key difference; now you can accrue overhead by work that
copies values between threads on one machine to threads on
another machine

9

Shared vs. Distributed

Common Features between Shared and Distributed
Redundant Work

To avoid sharing overhead, sometimes tasks perform the same
calculations; as opposed to having one task compute that
value once and share with all other threads

In this case, each task is performing redundant work

Shared Data
Tasks may sometimes share data; depending on the semantics
of the application that sharing has to be protected with
synchronization objects which adds overhead; or overhead is
incurred when shared data is copied between machines

10

Shared vs. Distributed

Common Features between Shared and Distributed
Static vs. Dynamic Allocation of Work

Some programs will have a clear mapping of tasks to threads
The mapping can be assigned statically (within the source code)
and the same thread will perform the same type of work each
time the program is run

In situations, where tasks cannot be predicted ahead of time or
there are simply way more tasks than threads, a dynamic
allocation strategy is employed

simple manifestation: jobs placed on synchronous queue; threads
block on the queue waiting for jobs to arrive

11

Shared Only

Characteristics of Shared Memory Parallelism
Local declarations and thread-local storage

Not all variables are shared among threads

Indeed, you want to minimize the number of shared vars
We saw an example of thread-local storage last week in Ruby

Memory Effects
Threads can interact with cache in detrimental ways

Sharing can reduce the amount of cache available to each thread
or two threads hitting the same cache line for different values can
trigger poor performance of the cache

12

Shared Only

Characteristics of Shared Memory Parallelism
Communication in Memory

To share data between threads, one thread writes to a variable
and the other thread reads to it; without careful design or
synchronization objects, reads and writes can occur in
unpredictable orders leading to incorrect output

Demo

Example makes use of Ruby’s distributed programming
framework, Rinda, an implementation of Linda tuple spaces

Consists of three pieces: a Rinda server, a service and a client
with ten threads

Note: in this example, the tuple space becomes the shared mem.

13

Shared Only

Characteristics of Shared Memory Parallelism
Mutual Exclusion

In shared memory situations, if you have multiple readers / writers
accessing the same value, you will need to ensure that only one
of those threads can update the value at a time

and that no thread can read the value while the update occurs)

We saw this in the previous example

Our use of ring_server.read vs ring_server.take amounted to the
non-use and use (respectively) of mutual exclusion semantics

In that example, the correct result (100) was only achieved when
mutual exclusion was achieved

14

Shared Only

Characteristics of Shared Memory Parallelism
Producer/Consumer

A common approach to work allocation
Have small set of producers generating tasks
Have larger set of consumers taking tasks and executing them
In between have a shared queue that uses synchronization to
prevent the queue from being corrupted

Reader/Writer Locks
A variant of mutual exclusion that allows threads to declare
whether they only read or only write a value; enforces sync. such
that lots of reads can occur simultaneous but only everyone (both
readers and writers) are blocked when a write occurs

15

Design Models

Two primary design models for concurrent algorithms

Task Decomposition

identify tasks (computations) that can occur in any order

assign such tasks to threads and run concurrently

Data Decomposition

program has large data structures where individual data
elements can largely be calculated independently

data decomposition implies task decomposition in these cases

16

Task Decomposition 17

Task Task Task Task Task

Synchronization Point

Task Task Task

Synchronization Point

Task

Task

Task

Task

sequential systemconcurrent system

Task Decomposition 18

As shown on the previous slide
to convert a sequential system into a concurrent system

you need to identify sequential pieces of work that can run
independent of one another

this can be hard to do, as tasks will have dependencies
a makes use of info generated by b

a and b both read/modify a value created by c

etc.

Ultimate Goal: sequential consistency: concurrent program
must produce the same answer as the sequential version

Task Decomposition 19

Basic Framework
main thread

defines/prepares tasks

spawns threads

assigns tasks to threads

wait for threads to complete: threads.each { |t| t.join }

repeat until done

Lots of variations
for instance, don’t kill threads, keep them around so you
don’t have to spawn new ones the second time around

Task Decomposition 20

Three Key Elements
What are the tasks and how are they defined?

What are the dependencies between tasks and how can they
be satisfied?

How are tasks assigned to threads?

Finding Tasks…

There is no magic formula

“You need to be able to mentally simulate the execution of
two parallel streams on suspected parts of the application to
determine whether those suspected parts are independent of
each other (or might have manageable dependencies).”

One exception:

if you find a loop, see if you can execute it backwards and
achieve the same result

if so, you might be able to create one task per loop iteration

But there are heuristics to guide your work…

21

Finding Tasks…

Use profiler to identify “hotspots” in the sequential program

if a program spends 80% of its execution time in one section
of the program, and you can parallelize that section, you
might see big performance gain: “biggest bang for the buck”

Any decomposition must meet two criteria

There should be at least as many tasks as threads (cores)

The amount of computation within each task (granularity)
must be large enough to offset the overhead needed to
manage tasks and threads

Goal: More tasks than threads with high granularity

22

Dependencies

Order Dependencies

Task A must be completed before Task B

Schedule A and B on the same thread, with A coming first

If that’s not possible, then introduce synchronization object

Data Dependencies

Two tasks are writing to the same variable or the potential
exists for one or more tasks to read a variable while it is being
updated by other tasks

Data dependencies can be harder to eliminate

23

Dependencies

Addressing data dependencies

Sometimes a dependence can be broken by having a
dependent task calculate the required value itself (redundant
work) using local variables or thread-specific storage

If these techniques do not work, then you will have to use
synchronization objects (aka locks) to ensure that a result is
generated correctly

biggest problem here is that adding locks cannot be done
without impacting performance and reasoning about locks in a
system can be VERY hard to get right

24

Assigning Tasks

Static Scheduling vs. Dynamic Scheduling

Discussed previously… (slide 11)

25

26

static long num_rects = 100000;1
2

void main() {3
 int i;4
 double mid, height, width, sum = 0.0;5
 double area;6

7
 width = 1.0/(double)num_rects;8
 for (i = 0; i < num_rects; i++) {9
 mid = (i + 0.5) * width;10
 height = 4.0/(1.0 + mid*mid);11
 sum += height;12
 }13

14
 area = width * sum;15
 printf("Computed pi = %f\n", area);16
}17

18

Food for Thought

27How to decompose?

What should we do to perform task decomposition on the
example on the previous slide?

Demo

Ruby solution

proves that ruby 1.9.x is providing concurrency

Java solution

proves that java 1.6.x is providing parallelism

Wrapping Up

Concepts

Threading Methodologies

Parallel Algorithms (Intro)

Shared-Memory vs. Distributed Memory Programming

Design Models for Concurrent Algorithms

Task Decomposition

For next time

Data Decomposition and What’s Not Parallel

28

Coming Up Next

Lecture 7: Project Planning

Chapter 3 of Pilone & Miles

Lecture 8: Proving Correctness and Measuring Performance

Remainder of Chapter 2 Topics

Chapter 3 of Breshears

29

