
© University of Colorado, 2010

Gathering
Requirements
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 5 — 01/26/2010

1

Goals

Review material from Chapter 2 of Pilone & Miles

Concepts include

Requirements and Requirements Gathering

User Stories

Brainstorming

Planning

Estimation Game

Will also review requirements-related info not from textbook

2

Requirements Gathering

Requirements gathering begins with a problem statement
from your customer. Example:

We need a web site showing our current deals, and we want
our users to be able to book shuttles and special packages,
as well as pay for their bookings online. We also want to offer
a luxury service that includes travel to and from the
spaceport and accommodation in a local hotel

Characteristics?

Loose, informal, unstructured, all over the place (deals,
bookings, packages, payment, shuttle services, hotels)

3

Title:

Description:

4
Title:

Description:

Title:

Description:

Title:

Description:

First Step: Impose Structure

Identify all of the different things the system has to do.

5

In particular, find requirements

A requirement is a single thing
that the software has to do

Title: Show Current Deals

Description: The website

will show current deals to

Orion's Orbits users.

6

Note:

Title: Show Current Deals

Description: The website

will show current deals to

Orion's Orbits users.

Written in User’s Language

Informal: because we don’t have a lot of information

But, allows us to validate initial understanding of domain

7

Translate Entire Problem Statement:
Title: Show Current Deals

Description: The website

will show current deals to

Orion's Orbits users.

Title: Book a shuttle

Description: An Orion's

Orbits user will be able to

book a shuttle between hotel

and spaceport.

Title: Book package

Description: An Orion's

Orbits user will be able to

book a special package with

extras online.

Title: Pay online

Description: An Orion's

Orbits user will be able to pay

for their bookings online.

Title: Arrange Travel

Description: An Orion's

Orbits user will be able to

arrange travel to and from the

hotel.

Title: Book a hotel

Description: An Orion's

Orbits user will be able to

book a hotel.

8

Then, return to customer and:
Title: Show Current Deals

Description: The website

will show current deals to

Orion's Orbits users.

Title: Book a shuttle

Description: An Orion's

Orbits user will be able to

book a shuttle between hotel

and spaceport.

Title: Book package

Description: An Orion's

Orbits user will be able to

book a special package with

extras online.

Title: Pay online

Description: An Orion's

Orbits user will be able to pay

for their bookings online.

Title: Arrange Travel

Description: An Orion's

Orbits user will be able to

arrange travel to and from the

hotel.

Title: Book a hotel

Description: An Orion's

Orbits user will be able to

book a hotel.

• ask questions

• Did I get this right?

• What did you mean by…

• and gather more requirements

• Is this really all of the
functionality that you need?

• If we built all of this, what
would you want in version 2.0?

Title: New Requirement

Description: Pithy text

describing new requirement... All this work will lead to new
or clarified requirements

Note: iteration

9Problem: Not Enough?

One problem that you’ll encounter is that this back and
forth may not be enough to get to crisp detailed
requirements

or you feel that you just don’t have a good grasp on the big
picture

This can be especially true if “customer” ≠ “end user”

Next step is to hold a brainstorming session with as many
different stakeholders as possible

what the book calls a “bluesky session” and is sometimes
called “shooting for the moon”

Bluesky Session

Brainstorming session

Goal: get stakeholders to generate tons of candidate
requirements; not everything will make it into the final system

Secondary Goal: Capture everything for later analysis

Things to Avoid

The Silent Tomb®: Leave job titles at the door, people should
not feel afraid to speak up just because the boss is there

Criticizing people rather than ideas

Developer jargon “NOT ‘AJAX’ but ‘rich user interface’”

10

11

Air Traffic Control

Flight Tracking

Airports
Nations

Shipping

air traffic control

flight numbers

Gate Scheduling

Airlines Employees

Luggage

GovernmentsRegulations

Packages

Animals

Invoicing

Multiple Companies on Single
Transaction

physics of flight

Airports

Airports

Luggage

Airlines

Employees

Scheduling

Flights

Scheduling

Airline/Airport handoff

Bag numbers

Handling of oversize items

Handling of live animals

1.

a.

i.

1.

ii.

1.

2.

a.

b.

c.

d.

Make use of outliners and other
types of note taking applications
during brainstorming sessions to
capture the generated ideas,
domain knowledge, and
requirements; to the right is an
example generated by Curio, a
note taking application from
Zengobi.

Tool Support

http://zengobi.com/
http://zengobi.com/

Gray Skies

If things go wrong during the bluesky session: “bad boss”

Make use of other techniques

Interview end users and have them pretend to interact with
their “ideal system”, what the book calls “role playing”

Observe them working on tasks related to the system

how would the task change if the system were present?

Review the documents they use now

ask if the document would go away if the system were present

or how would it change?

12

Next? User Stories

Transform requirements gathered so far into user stories

A user story describes how the user interacts with the
software you’re building

It should be written from your customer’s perspective and
describe what the software is going to do for the customer

User stories are essentially informal use cases

See CSCI 5448 for more details on use cases

13

User Stories

SHOULD

describe one thing the system should do for the customer

be written using language that the customer understands

be written by the customer

be short. No longer than three sentences

SHOULD NOT

be a long essay

use technical terms unfamiliar to the customer

mention specific technologies (save those for design)

14

Requirements Life Cycle

We now have a life cycle for use at the start of a project

Capture basic ideas from problem statement

Return with first pass, ask questions, set-up bluesky session

ITERATE

Construct User Stories

Find holes with stories and fix them with customer feedback,
find new requirements, ask questions to assess completeness

Finish with initial set of clear, customer-focused user stories

This defines the WHAT of the project, next up is the WHEN

15

But first… types of requirements

There are different types of requirements

functional

non-functional

constraints

The process that we described above is focused on
generating functional requirements

what are the functional capabilities of the proposed system

16

Non-functional Requirements

A non-functional requirement

states things that are true of a system regardless of its
functionality

For instance:

The system will return a response in less than a second

This is a non-functional requirement on performance: note
that it provides no conditionals; for whatever reason, it
wants sub-second response time no matter how many
users the system it has or how much data it is processing

17

Non-functional Requirements

Non-functional requirements are sometimes called the
“ilities”

reliability

extensibility

flexibility

scalability (in terms of users, data, machines, etc.)

but also
robustness, security, fault tolerance, performance

Main point: these are requirements independent of the
system’s core functionality (easy way to think about it: API)

18

Constraints

Constraints in the requirements phase are typically
restrictions imposed by your client on the range of possible
solutions to the stated problem

“We’re a Windows shop; the system has to run on XP”
“We’ve already bought Oracle; you’ll need to use it”
“We got this legacy system you’ll need to interface with”
“We’ve made a significant investment in RIM; the mobile app
has to run on a Blackberry”

You want to avoid these as much as possible (it can limit
your creativity as a designer) but often you’ll have at least
one or two in any given project

19

(On to) Estimates

At some point during the requirements gathering process,
the customer will ask

How long will all of this take to develop?

You need to supply a project estimate

which will be the sum of the estimates for your user stories

So, now you need to supply estimates for each user story

How do we come up with this estimate?

20

Planning Poker

A popular estimation technique in agile methods

Addresses the problem in which two or more team
members come up with wildly different estimates for a story

i.e. when a single user story generates estimates of say “3
days”, “2 weeks”, and “3 months” from three different
developers

The underlying cause for these different estimates is
assumptions; what did you assume was true or not true
about the project to generate the number that you did?

21

Example

“Add a comment on a product page”

One team member might think:

“Simple. We need a form, a script to process the form, and a
place to store the comment in the database. 3 days.”

Another might think:

“Hmm. How do we relate the comment to the product? Do
we have one comment table per product in the database?
Will I need to change the product class? Maybe there is code
from some other place in the system that I can re-use. 2
weeks.”

22

Example, continued

Finally, another might think:

“Ugh. Complete database re-design. No code to re-use (this
is the first time we’re allowing comments). What user
interface should we use? Can the user embed HTML in their
comments? How do we handle smileys? How will this impact
the product model class? Do we keep the comments forever?
Do we need moderation? Can a user edit a past comment?
Who gets to delete comments? Yuck!! 3 months!”

Based on your assumptions, you’ll get completely different
numbers. How do you get these assumptions to the
surface? Planning Poker!

23

Planning Poker (I)

Create “deck” of cards. 13 cards per “player”.

Each card contains an estimate spanning from “already
done” to “wow this is going to take a long time”.

0, .5, 1, 2, 3, 5, 8, 13, 20, 40, 100 days

One card has a “?” meaning “not enough information”

One card has a coffee cup meaning “lets take a break”

24

Planning Poker (II)

Place a user story in the middle of the table

Each team member thinks about the story and forms initial
estimate in their heads

Each person places the corresponding card face down on
the table; note: estimate is for entire user story

Everyone then turns over the cards at the same time

The dealer marks the spread across the estimates

25

1008 13 20

Planning Poker (III)

The larger the difference between the estimates, the less
confident you are in the estimate, and the more
assumptions you need to highlight and discuss

So, the next step in planning poker is

Put assumptions on trial for their lives

Have each team member list the assumptions they made
and then start discussing them

Again, you need to criticize the assumption not the person

Goal is to get agreement on what assumptions truly apply

26

Planning Poker (IV)

If the assumptions reveal a misunderstanding of the
requirements, then go back to the client and get that
misunderstanding clarified

Otherwise, start to eliminate as many assumptions as
possible, then have everyone revise their estimates and play
planning poker again to see if the spread has decreased

Your goal is convergence. Once estimates cluster around a
common number, assign that number and move to the next
story

27

Planning Poker (V)

Your life cycle is thus

Talk to customer: clarify misunderstandings, assumptions

Play planning poker

Clarify assumptions, possibly by returning to step 1

Come to a consensus estimate for the user story

Do this until all user stories have a consensus estimate
assigned

28

Planning Poker (VI)

Things to watch out for
Although implied in the previous slides, don’t do one card at
a time with multiple customer sessions each time

Value your customer’s time
Process each card, identifying assumptions/misunderstandings
that need clarification; THEN meet with customer

Big estimates (== bad estimates)
They indicate that the story is too big; decompose; try again

Remember, the book’s ideal iteration is 20 work days (1 month)

Estimates longer than 15 days are more likely to be wrong than
those shorter than 15 days; (others think 7 days is upper limit)

29

Requirements Life Cycle

Capture basic ideas

Bluesky Brainstorming

Construct User Stories

Find holes, get feedback

Clear, customer-focused user stories

Play planning poker

Clarify misunderstandings and assumptions

Develop project estimate

30

Iterate
May
need

to
Iterate

After the estimate?

At the end of this process, you may discover that your
project estimate is too long

In the book, the developers came up with a 2-year estimate
that the customer says is way too long

We’ll look at how to deal with that situation in Lecture 7

Now, lets look at the requirements phase a little more
broadly

31

Software Requirements

Is the most critical task in software development

Its goal is to understand the problem that needs to be solved

If you don’t understand the problem, you can’t solve it

Example

There is a farmer with a fox, a rabbit and a prize cabbage.
There is a row boat, complete with oars, on one side of the
river. On the other side is a market. There is room in the boat
for any two of the four. The fox is hungry, so is the rabbit.
Foxes like to eat rabbits, rabbits like to eat cabbages.

What’s the Problem?

32

Problem Context vs.
Problem

In software development, there is typically one problem
context but there may be more than one problem to be
solved within that context

During requirements, you need to

understand the problem context

determine which problem (or problems) need to be solved

document your understanding (with user stories)

The problem context is also known as the application
domain or problem domain

33

What about Design?

After you understand the problem, you design a solution;
Need to find the intersecting concepts that allow our machine
(i.e. software system) solve the problem in the app. domain

34

Application
Domain

Machine

shared phenomena

Shared Phenomena? (I)

There will be some aspects of the application domain that
will not be modeled, tracked, or otherwise handled by the
machine

For instance, when controlling elevators, a software system
may not care about the movement of cars between floors or
the number of passengers in a car

But there will be other elements of the application domain
that are critical to the machine and will thus be tracked

Elevator Domain: button presses, door open, door close,
number of cars, number of floors, etc.

35

Shared Phenomena? (II)

Similarly, there will be elements of the machine (aka solution
domain) that will have no correspondence to elements in
the application domain

The algorithm to schedule the movement of elevators is
intangible and will only exist as code stored on a computer; it
has no physical counterpart in the elevator domain

36

Shared Phenomena? (III)

Those application domain elements that are modeled by the
machine are shared; developers must perform work to
enable that sharing

Elevator Domain: A call button must be wired to a hardware
device connected to the software system such that pressing
the button delivers a signal to the software system. Likewise,
if the system determines that car A should go to floor B, there
needs to be a mechanism that allows the software to send
that command and have it be followed

37

Problem Context, Take 2 38

Application
Domain

Machine

shared phenomena

problem
context

elements

machine
elements

Requirements
Engineering (I) 39

We must understand the application domain and then
understand the problem that needs to be solved

As understanding grows, we document it via requirements

What's a requirement? IEEE definition
A condition or capacity needed by a user to solve a problem or
achieve an objective

A condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard,
specification or other formally imposed documents

A documented representation of a condition or capability as in 1 or 2

Requirements
Engineering (II) 40

(One) Definition of Requirements Engineering

“The systematic process of developing requirements through
an iterative cooperative process of analyzing the problem,
documenting the resulting observations in a variety of
representation formats, and checking the accuracy of the
understanding gained.” K. Pohl, 1993

Two Phases

Requirements Elicitation

The process whereby a development agency discovers what
is needed and why (i.e. develops an understanding of the
problem and the problem context)

Requirements Analysis

The process of understanding the requirements

Asks questions about completeness and consistency

As we’ve seen, we iterate between these two phases until
we are “done”

41

Problems (I)

It is important to understand that performing requirements
engineering is HARD

Developers are not domain experts

need to learn jargon just to have conversations with domain
experts

will have problems conveying solution-domain concepts to
domain experts

will never fully understand the domain

must be careful not to alienate domain experts, who may be
technology-phobic

42

Problems (II)

Additional Problems

domain experts and end-users may not understand how
software will change their environment

domain experts will not reveal all relevant domain information
at once, will be surprised at how much they have to explain
to bring developers up to speed

customer may not know what they want from a system, or
may have ideas that are just plain wrong or infeasible

customer may change their minds about information provided
previously

43

Problems (III)

It is also difficult to transition between the two phases of
requirements engineering

It may not be clear how to transform your understanding of
the domain into specific requirements

What formalisms should be used?

Is natural language enough?

At some point, you need to be able to specify what the inputs
of the system will be and what outputs it should produce
WITHOUT specifying a solution to the problem

In order to make progress, iteration is essential!

44

Formalisms

Requirements can be captured in a variety of formalisms

Natural language text via the “big document” approach

Also known as the software requirements specification

Natural language via the user story / use case approach

Formal Methods: Z, StateCharts, etc.

Makes use of algebraic specifications, finite state machines, …

Data Flow Diagrams

Viewpoints

(See <http://www.requirementsviewpoints.blogspot.com/>)

45

http://www.requirementsviewpoints.blogspot.com
http://www.requirementsviewpoints.blogspot.com

Tools

Directory of Requirements Management Tools
<http://www.software-pointers.com/en-requirements-
tools.html>

IBM’s Rational RequisitePro
<http://www-01.ibm.com/software/awdtools/reqpro/>

IBM’s Telelogic Doors
<http://www-304.ibm.com/jct01005c/software/awdtools/
doors/productline/>

Many more… note: agile methods shun the use of these
tools and stick with user stories and (later) issue tracking

46

http://www.software-pointers.com/en-requirements-tools.html
http://www.software-pointers.com/en-requirements-tools.html
http://www.software-pointers.com/en-requirements-tools.html
http://www.software-pointers.com/en-requirements-tools.html
http://www-01.ibm.com/software/awdtools/reqpro/
http://www-01.ibm.com/software/awdtools/reqpro/
http://www-304.ibm.com/jct01005c/software/awdtools/doors/productline/
http://www-304.ibm.com/jct01005c/software/awdtools/doors/productline/
http://www-304.ibm.com/jct01005c/software/awdtools/doors/productline/
http://www-304.ibm.com/jct01005c/software/awdtools/doors/productline/

Data Flow Diagrams (I)

Shows the flow of data through a system

Does not specify an ordering of operations, nor does it show
looping, handling exceptions, etc.

Instead specifies the input and output of each process in
the application domain

It is often easy for humans to impose an ordering on the DFD

47

Data Flow Diagrams (II)

Legend

Circles: Process or Function

Rectangles: Data source and/or sink

Arrows: Named data flows

External Repositories shown as labeled straight lines

Asterisk (*) indicates multiple required inputs to a process
(process requires A AND B)

Plus (+) indicates multiple inputs to a process such than only
one is required (process requires A OR B)

48

49

Get
Employee

File

Weekly
Pay

Overtime
Pay

Deduct
Taxes

Issue
Paycheck

Worker

Employee Record Company Records

Tax Rates

Check

Pay
Rate

Employee
Id

Regular
Hours

Overtime
Hours

Pay
Total
Pay

Net
Pay

Overtime
Rate

Tax
Deducted

Net
Pay

Tax
Deducted

Worker

Weekly
Timesheet

*

*
*

50Wrapping Up

Today, we saw the importance of requirements

Of identifying the problem to be solved and its problem
context

Of the use of iteration in requirements gathering

How user stories can be used to document requirements

How planning poker can be used to generate estimates

Saw references to requirements management tools

Used DFD as an example of another formalism used to
generate/elicit requirements

Coming Up

Lecture 6: Concurrent or Not-Concurrent?

Chapter 2 of Breshears

Lecture 7: Project Planning

Chapter 3 of Pilone & Miles

51

