
© University of Colorado, 2010

Introduction to 
Concurrency
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 4 — 01/21/2010

1



Credit where Credit is 
Due

Some text and images for this lecture come from the lecture 
materials provided by the publisher of the Magee/Kramer 
optional textbook. As such, some material is copyright © 
2006 John Wiley & Sons, Ltd.

2



Lecture Goals

Review material in Chapter 1 of the Breshears textbook

Who wants to go faster? Raise your hand if you want to go 
faster! :-)

Threading Methodologies

Parallel Algorithms (Intro)

Cover remainder of Chapter 1 material in Lecture 6

3



Why worry?

“Concurrency is hard and I’ve only ever needed single-
threaded programs: Why should I care about it?”

Answer: multi-core computers, increasing use of clusters

Growth rates for chip speed are flattening

“lets wait a year and our system will run faster!”: No longer!

Instead, chips are becoming “wider”

more cores, wider bus (more data at a time), more memory

As chips are not getting faster (the same way they used to), 
a single-threaded, single process application is not going to 
see any significant performance gains from new hardware

4



New Model

Instead, software will only see performance gains with new 
hardware if they are designed to get faster the more 
processors they have available

This is not easy: the computations that an application performs 
have to be amenable to parallelization

Such an application will see noticeable speed improvements 
when run on machines with more processors

2-cores, 4-cores, 8 cores becoming standard (Intel 80-cores!) 

A system written for n-cores could potentially see an 80x 
speed-up when run on such a machine (very hard to achieve 
linear speed ups, however!)

5



In addition…

Concurrent programming is becoming hard to ignore

In addition to the increasing presence of multi-core 
computers there are lots of other domains in which 
concurrency is the norm

Embedded software systems, robotics, “command-and-
control”, high-performance computing (use of clusters), …

Web programming often requires concurrency (AJAX)

Web browsers: examples of multi-threaded GUI applications

without threads the UI would block as information is 
downloaded

6



BUT…

While concurrency is widespread it is also error prone

Programmers trained on single-threaded programs face 
unfamiliar problems: synchronization, race conditions, 
deadlocks, etc.

Example: Therac-25
Concurrent programming errors contributed to accidents 
causing death and serious injury

Mars Rover

Problems with interaction between concurrent tasks caused 
periodic software resets reducing availability for exploration

7

http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://catless.ncl.ac.uk/Risks/19.49.html
http://catless.ncl.ac.uk/Risks/19.49.html


8

Basics: Single Thread, Single Process, Single Machine

Machine

Process

Thread

Data/Code

Sequential Program == Single Thread of Control



9

Basics: Multiple Thread, Single Process, Single Machine

Machine

Process

Thread

Data/Code

Thread

Concurrent Program == Multiple Threads of Control



If the machine has 
multiple processors, then 
true parallelism can 
occur. Otherwise, 
parallelism is simulated

10

Multi-Thread: But is it truly parallel?

Machine

Process

Thread

Data/Code

Thread

Concurrent Program == Multiple Threads of Control

We may have multiple 
threads in this 
process, but we may 
not have events truly 
occurring in parallel. 
Why not?

It depends on the machine!



Machine

11

Basics: Single Thread, Multiple Process, Single Machine

Process

Thread

Data/Code

Process

Thread

Data/Code

Process

Thread

Data/Code



12

Basics: Multi-thread, Multi-Process, Single Machine

Machine

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Note: You can have way more than just two threads per process.



13

Basics: Multi-everything

Machine

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Machine

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread



Applications are Dead! Long Live Applications!

14

Due to the ability to have multiple threads, multiple processes, and 
multiple machines work together on a single problem, the notion of 
an application is changing. It used to be that:

Process

Thread

Data/Code
Application == 



Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Now… we might refer to this as “an application”

15

Machine

6

Basics: Multiple Thread, Single Process, Single Machine

Process

Thread

Data/Code

Thread

For instance, we might call 
this “Google”

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine
Process

Data/Code

Process

Data/Code

Process

Data/Code

Machine

6

Basics: Multiple Thread, Single Process, Single Machine

Process

Thread

Data/Code

Thread

multi-threaded client,
multi-threaded server
that, in turn, relies on a 
cluster of machines to 
service the request



Architecture Design 
Choices 16

When designing a modern application, we now have to ask

How many machines are involved?

What components will be deployed on each machine?

For each component:

Does it need concurrency?

If so, will we achieve concurrency via

multiple threads?

multiple processes?

both?



Consider Chrome (I)

Google made a splash last year by announcing the creation 
of a new web browser that is

multi-process (one process per tab) and

multi-threaded (multiple threads handle loading of content 
within each process)

In typical Google style, they documented their engineering 
choices via a comic book

<http://www.google.com/googlebooks/chrome/index.html>

17

http://www.google.com/googlebooks/chrome/index.html
http://www.google.com/googlebooks/chrome/index.html


Consider Chrome (II)

Some of the advantages they cite for this design
stability

single-process, multi-threaded browsers are vulnerable to 
having a crash in one tab bring down the entire browser

speed
multi-process browsers can be more responsive due to OS 
support

security
exploits in single-process browsers are easier if malware 
loaded in one tab can grab information contained in another 
tab; much harder to grab information across processes

18



Chrome Demo

We can use process monitoring capabilities to verify that 
Chrome is indeed multi-process and multi-threaded.

Demo

19



Other benefits to multi-
process design*

Lots of existing applications that do useful things
Think of all the powerful command line utilities found in Unix-
based platforms; You can take advantage of that power in your 
own application

Create a sub-process, execute the desired tool in that process, 
send it input, make use of its output

Memory leaks in other programs are not YOUR memory leaks
As soon as the other program is done, kill the sub-process and 
the OS cleans up

Flexibility: An external process can run as a different user, can run 
on a different machine, can be written in a different language, …

20

* Taken from discussion in Cocoa Programming for Mac OS X by Aaron Hillegass



Example

Developing our own concurrent applications

Let’s look at the performance of

a single threaded program

a multi-threaded program

a multi-process program

all trying to perform the same task

Searching for files that contain a particular search term

21



Background

Our program will be searching 741 MB of data split across 
~108,000 text files

Files are stored as the leaves of a “tree” of folders

11 folders at the top

In general, each contain 10 sub-folders, each with 1000 articles

The articles themselves contain blog posts about the 
political turmoil that surrounded the recent election in Iran

22



Range of Solutions

Developed 5 ruby programs to explore
single threaded, multi threaded & multi process

approaches to solving this problem
Single threaded approach iterates over entire directory 
structure and maintains a count as it goes along

Multiprocess approach creates one process per top level 
directory -> invokes single threaded program on each

Multithreaded approach creates one thread per top level 
directory; each thread acts like single-threaded program

Demo

23



Times 24

times in 
seconds

Single MultiThreaded MultiProcess

real

user

sys

75.775 42.735 48.94

12.46 11.08 9.655

17.95 13.53 10.735

Times are averages of two separate runs of each program



Underwhelming (I) 25

If we take a look at the user and system times, there is 
almost no difference

Why?



Underwhelming (II)

If we take a look at the user and system times, there is 
almost no difference

Lots of possible reasons

Shared Disk (primary)

Low processor utilization for each program

(waiting for the disk?)

Use of scripting language

(anyone want to write these programs in C?)

26



Mem vs. Disk?

To test the theory that disk I/O dominated the results, I also 
created two programs that

read all articles into memory

and then perform the search

one program was single threaded

the other was multi process

27



Times 28

times in 
seconds

Single MultiProcess

real

user

sys

87.38 43.9

15.165 10.21

20.455 11.105

Times are averages of two separate runs of each program



Slightly better 29

However, my numbers between runs had high variability

so I can’t be 100% confident in these numbers

I have a new respect for the area of performance modeling!



On to the textbook...

When we execute a program, we create a process

A sequential program has a single thread of control

A concurrent program has multiple threads of control

A single computer can have multiple processes running at once; 
If that machine, has a single processor, then the illusion of 
multiple processes running at once is just that: an illusion

That illusion is maintained by the operating system that coordinates 
access to the single processor among the various processes

If a machine has more than a single processor, then true parallelism 
can occur: you can have N processes running simultaneously on a 
machine with N processors

30



Thus... 31

Concurrency

Parallelism

Concurrent Program 
on Single Core 

Machine

Concurrent Program 
on Multi Core Machine



Potential Speed Up? 32

As an upper bound, performance improvements for 
concurrent applications over single-threaded applications

two cores ➞ 200% speed up (runs in half the time)

four cores ➞ 400% speed up (runs in quarter the time)

etc.

Better than the typical increase of 20-30% provided by new 
single-core CPUs

However, it is extremely difficult to achieve these speedups

Creating a scalable concurrent system is very hard



Why? (I)

Overhead

Converting a non-concurrent program into a concurrent 
program adds overhead

You may need to rearrange data structures

You have to add code to manage threading

creating threads, waiting for them to end, querying them, passing 
information between them, etc.

The single threaded program had NONE of this extra code

In order to see a performance gain, there must be enough 
work for the threads to do to trivialize the overhead

33



Why? (II)

As we saw with the example program

It can be hard to determine why a concurrent program is or is 
not running faster than a single threaded program

The OS may not assign your program a high enough priority to 
run at top speed

The program may be I/O bound and spend most of its time 
waiting

More generally, the program may encounter bottlenecks that end 
up blocking any gains you might have seen from threads or 
multiple processes

34



In addition...

Designing, implementing & testing concurrent programs is 
hard

Much harder than testing sequential programs due to

interference: two threads accessing shared data 
inappropriately

race conditions: behaviors that appear in one configuration 
but don’t appear in other configurations

deadlock: threads block waiting for each other

To guard against these problems, you need synchronization 
to protect shared memory, which slows programs down

35



Graphically: Sequential Program

3
2

1

9

8

4 7
6

5

main.java foo.java

bar.java

baz.java

db.java ui.java



Graphically: Concurrent Program

3
2

1

9

8

4 7
6

5

3

1

5

2

4

main.java foo.java

bar.java

baz.java

db.java ui.java



Example of Interference

3
2

1

9

8

4 7
6

5

3

1

5

2

4

main.java foo.java

bar.java

baz.java

db.java ui.java

The potential for interactions… two threads hitting the same method 
at the same time, potentially corrupting a shared data structure



Other problems…

With serial programs, execution takes a predictable path

Logic errors can be tracked down systematically and with 
good tool support

With concurrent programs, developer must keep track of 
multiple execution paths whose instructions can arbitrarily 
interleave

Two threads with four instructions each: 70 different ways to 
interleave their instructions!

Tool support is minimal and errors do not behave predictably

Indeed, adding debug statements can “fix” problems

39



Benefits of Concurrent 
Programming?

Performance gain from multi-core hardware
True parallelism

Increased application throughput
an I/O call need only block one thread

Increased application responsiveness
high priority thread for user requests

More appropriate structure
for programs which interact with the environment, control multiple activities, 
and handle multiple events

by partitioning the application’s thread/process structure to match its 
external conditions (e.g. one thread per activity)

40



Threading Methodology

Breshears presents a threading methodology
First produce a tested single-threaded program

Use reqs./design/implement/test/tune/maintenance steps

Then to create a concurrent system from the former, do
Analysis: Find computations that are independent of each other

AND take up a large amount of serial execution time (80/20 rule)

Design and Implement: straightforward 

Test for Correctness: Verify that concurrent code produces 
correct output

Tune for performance: once correct, find ways to speed up

41

Note: does not recommend going straight to concurrency!



Performing Tuning

Tuning threaded code typically involves

identifying sources of contention on locks (synchronization)

identifying work imbalances across threads

reducing overhead

Testing and Tuning

Whenever you tune a threaded program, you must test it 
again for correctness

Going back further: if you are unable to tune system 
performance, you may have to re-design and re-implement

42



Parallel Algorithms (Intro)

In looking at the development of parallel algorithms, the 
standard Von Neumann architecture is modified, from this

43

CPU

MemoryINPUT OUTPUT



Parallel Algorithms (Intro)

to this

44

CPU

MemoryINPUT OUTPUT

Shared Bus

CPUCPU••• •••



Wrapping Up

Concepts

Introduced notion of concurrency systems

And the related notion of parallelism

Presented an example single threaded system along with 
multi-threaded and multi-process variants

Discussed benefits and problems of concurrent 
programming

Reviewed Breshears recommended threading methodology

45



Coming Up Next

Lecture 5: Gathering Requirements

Chapter 2 of Pilone & Miles

Lecture 6: Concurrent or Not Concurrent

Remainder of Chapter 1 material

Begin look at Chapter 2 of Breshears

46


