
© University of Colorado, 2010

No Silver Bullet
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 2 — 01/14/2010

1



Lecture Goals

Introduce thesis of Fred Brook’s No Silver Bullet

Classic essay by Fred Brooks discussing
“Why is SE so hard?”

2



No Silver Bullet

“There is no single development, in either technology or 
management technique, which by itself promises even one 
order-of-magnitude improvement within a decade in 
productivity, in reliability, in simplicity.”

— Fred Brooks, 1986

i.e. There is no magical cure for the “software crisis”

3



Why? Essence and 
Accidents

Brooks divides the problems facing software engineering 
into two categories

essence: difficulties inherent in the nature of software

accidents: difficulties related to the production of software

Brooks argues that most techniques attack the accidents 
of software engineering

4



An Order of Magnitude

In order to improve software development by a factor of 10 

first, the accidents of software engineering would have to 
account for 90% of the overall effort

second, tools would have to reduce accidental problems to 
zero

Brooks doesn't believe that the former is true…

and the latter is nigh impossible because each new tool or 
technique solves some problems while introducing others

5



The Essence

Brooks divides the essence into four subcategories             

complexity

conformity

changeability

invisibility

Lets consider each in turn

6



Complexity (I)

Software entities are amazingly complex

No two parts (above statements) are alike

Contrast with materials in other domains

Large software systems have a huge number of states

Brooks claims they have an order of magnitude more states 
than computers (i.e. hardware) do

As the size of a system increases, both the number and 
types of parts increase exponentially

the latter increase is the most significant

7



Complexity (II)

You can't abstract away the complexity of the application 
domain. Consider:

air traffic control, international banking, avionics software

These domains are intrinsically complex and this complexity 
will appear in the software system as designers attempt to 
model the domain

Complexity also comes from the numerous and tight 
relationships between heterogeneous software artifacts 
such as specs, docs, code, test cases, etc.

8



Complexity (III)

Problems resulting from complexity

difficult team communication

product flaws; cost overruns; schedule delays

personnel turnover (loss of knowledge)

unenumerated states (lots of them)

lack of extensibility (complexity of structure)

unanticipated states (security loopholes)

project overview is difficult

9



Conformity (I)

A lot of complexity facing software engineers is arbitrary

Consider designing a software system for an existing 
business process and a new VP arrives at the company

The VP decides to “make a mark” on the company and 
changes the business process

Our system must now conform to the (from our perspective) 
arbitrary changes imposed by the VP

10



Conformity (II)

Other instances of conformity

Having to integrate with a non-standard module interface

Adapting to a pre-existing environment

and if the environment changes (for whatever reason), you can 
bet that software will be asked to change in response

Main Point: Its is almost impossible to plan for arbitrary 
change;

instead, you just have to wait for it to occur and deal with it 
when it happens

11



Changeability (I)

Software is constantly asked to change

Other things are too, however, manufactured things are rarely 
changed after they have been created

instead, changes appear in later models

automobiles are recalled only infrequently

buildings are expensive to remodel

12



Changeability (II)

With software, the pressure to change is greater

in a project, it is functionality that is often asked to change 
and software EQUALS functionality (plus its malleable)

clients of a software project often don't understand enough 
about software to understand when a change request 
requires significant rework of an existing system

Contrast with more tangible domains

Imagine asking for a new layout of a house after the foundation 
has been poured

13



Invisibility (I)

Software is by its nature invisible; and it is difficult to design 
graphical displays of software that convey meaning to 
developers

Contrast to blueprints: here geometry can be used to identify 
problems and help optimize the use of space

But with software, its difficult to reduce it to diagrams

UML contains 13 different diagram types (!)

to model class structure, object relationships, activities, event 
handling, software architecture, deployment, packages, etc.

14



Invisibility (II)

Hard to get both a “big picture” view as well as details

Hard to convey just one issue on a single diagram

instead multiple concerns crowd and/or clutter the diagram 
hindering understanding

This lack of visualization deprives the engineer from using 
the brain's powerful visual skills

15



What about “X”?

Brooks argues that past breakthroughs solve accidental 
difficulties

High-level languages

Time-Sharing

Programming Environments

OO Analysis, Design, Programming

…

16



Promising Attacks on the 
Essence

Buy vs. Build

Don't develop software when you can avoid it

Rapid Prototyping

Use to clarify requirements

Incremental Development

don't build software, grow it

Great designers

Be on the look out for them, when you find them, don't let go!

17



No Silver Bullet, Take 2

Brooks reflects on No Silver Bullet, ten years later

Lots of people have argued that their methodology, 
technique, or tool is the silver bullet for software engineering

If so, they didn't meet the deadline of 10 years or the target of a 
10 times improvement in the production of software

Others misunderstood what Brooks calls “obscure writing”

e.g., “accidental” did not mean “occurring by chance”;

instead, he meant that the use of technique A for benefit B 
unfortunately introduced problem C into the process of 
software development

18



The Size of Accidental 

Some people misunderstood his point with the 90% figure

Brooks doesn't actually think that accidental effort is 90% of 
the job

its much smaller than that

As a result, reducing it to zero (which is effectively 
impossible) will not give you an order of magnitude 
improvement

19



Obtaining the Increase

Some people interpreted Brooks as saying that the essence 
could never be attacked

That's not his point; he said that no single technique could 
produce an order of magnitude increase by itself

He argued that several techniques in tandem could achieve 
it but that requires industry-wide enforcement and discipline

Brooks states:

“We will surely make substantial progress over the next 40 
years; an order of magnitude improvement over 40 years is 
hardly magical…”

20



Quiz Yourself

Essence or Accident?

A bug in a financial system is discovered that came from a 
conflict in state/federal regulations on one type of transaction

A program developed in two weeks using a whiz bang new 
application framework is unable to handle multiple threads 
since the framework is not thread safe

A new version of a compiler generates code that crashes on 
32-bit architectures; the previous version did not

A fickle customer submits 10 change requests per week after 
receiving the first usable version of a software system

21



Returning to SE Intro

Lets continue our “Overview of Software Engineering” that 
was started in Lecture 1

This draws on material from Software Engineering: Theory 
and Practice by Pfleeger and Atlee

As such, some material is copyright © 2006 Pearson/Prentice 
Hall.

22

http://www.pearsonhighered.com/academic/product/0,3110,0131469134,00.html
http://www.pearsonhighered.com/academic/product/0,3110,0131469134,00.html
http://www.pearsonhighered.com/academic/product/0,3110,0131469134,00.html
http://www.pearsonhighered.com/academic/product/0,3110,0131469134,00.html


What is Software 
Engineering?

Simply Put: Its about solving problems with software-
based systems

Design and development of these systems require

Analysis

decomposing large problems into smaller, understandable pieces

abstraction is the key

Synthesis

building large software systems from smaller building blocks

composition is challenging

23



Solving Problems (I)

To aid us in solving problems, we apply

techniques: a formal “recipe” for accomplishing a goal that is 
typically independent of the tools used

procedure for thickening a sauce without causing it to curdle

tools: an instrument or automated system for accomplishing 
something in a better way, where “better” can mean more 
efficient, more accurate, faster, etc.

24



Solving Problems (II)

To aid us in solving problems, we apply

procedures: a combination of tools and techniques that, in 
concert, produce a particular product

paradigms: a particular philosophy or approach for building 
a product

Think: “cooking style”: may share procedures, tools, and 
techniques with other styles but apply them in different ways

Example: OO approach to development vs. the structured 
approach

25



Software Engineering: 
The Good

Software engineering has helped to produce systems that 
improve our lives in numerous ways

helping us to perform tasks more quickly and effectively

supporting advances in medicine, agriculture, transportation, 
and other industries

Indeed, software-based systems are now ubiquitous

How many computers do you have in your home?

How many times do you interact with a software-based 
system each day?

26



Software Engineering: 
The Bad (I)

Software is not without its problems

Systems function, but not in the way we expect

Or systems crash, make mistakes, etc.

Or the process for producing a system is riddled with 
problems leading to a failure to produce the entire system

many projects get cancelled without ever producing a system

One study in the late 80s found that in a survey of 600 firms, 
more than 35% reported having a runaway development 
project. A runway project is one in which the budget and 
schedule are completely out of control.

27



Software Engineering: 
The Bad (II)

CHAOS Report from Standish Group
Has studied over 40,000 industry software development 
projects over the course of 1994 to 2004.
Success rates (projects completed on-time, within budget) in 
2004 was 34%, up from 16.2% in 1994
Failure rates (projects cancelled before completion) in 2004 
was 15%, down from 31% in 1994.
In 2004, “challenged” projects made up 51% of the projects 
included in the survey.

A challenged project is one that was over time, over budget 
and/or missing critical functionality

28



Software Engineering: 
The Bad (III)

Most challenged projects in 2004 had a cost overrun of 
under 20% of the budget, compared to 60% in 1994

The average cost overrun in 2004 was 43% versus an 
average cost overrun of 180% in 1994.

In 2004, total U.S. project waste was 55 billion dollars with 
17 billion of that in cost overruns; Total project spending in 
2004 was 255 billion

29



Software Engineering: 
The Bad (IV)

In 1994, total U.S. project waste was 140 billion (80 billion 
from failed projects) out of a total of 250 billion in project 
spending

So, things are getting better (attributed to better project 
management skills industry wide), but we've still got a long 
way to go!

66% of the surveyed projects in 2004 did not succeed!

30



Software Engineering: 
The Ugly (I)

Loss of NASA’s Mars Climate Observer

due to mismatch of English and Metric units!

even worse: problem was known but politics between JPL 
and Houston prevented fix from being deployed

Leap-year bug

A supermarket was fined $1000 for having meat around 1 day 
too long on Feb. 29, 1988

Denver International Airport

Luggage system: 16 months late, 3.2 billion dollars over 
budget!

31



Software Engineering: 
The Ugly (II)

IRS hired Sperry Corporation to build an automated federal 
income tax form processing process

An extra $90 M was needed to enhance the original $103 M 
product

IRS lost $40.2 M on interest and $22.3 M in overtime wages 
because refunds were not returned on time

32



Software Engineering: 
The Ugly (III)

Therac-25 (safety critical system: failure poses threat to life or health)

Machine had two modes:

“electron beam” and “megavolt x-ray”

“megavolt” mode delivered x-rays to a patient by colliding 
high energy electrons into a “target”

Patients died when a “race condition” in the software allowed 
the megavolt mode to engage when the target was not in 
position

Related to a race between a “type ahead” feature in the user 
interface and the process for rotating the target into position

33



An error is a mistake made by a human

A fault is the manifestation of the error in a software artifact

A failure is a departure from a system’s expected behavior

Terminology for Describing 
Bugs 34



What is Good Software?

“Good” is often associated with some definition of quality. 
The higher the quality, the better the software.

The problem? Many different definitions of quality!

Transcendental: where quality is something we can 
recognize but not define (“I know it when I see it”)

User: where quality is determined by evaluating the fitness of 
a system for a particular purpose or task (or set of tasks)

Manufacturing: quality is conformance to a specification

35



What is Good Software?

Many different definitions of quality!

Product: quality is determined by internal characteristics (e.g. 
number of bugs, complexity of modules, etc.)

Value: quality depends on the amount customers are willing 
to pay

customers adopt “user view”; developers adopt 
“manufacturing view”, researchers adopt “product view”; 
“value view” can help to tie these together

36



What is Good Software?

Good software engineering must always include a strategy 
for producing high quality software

Three common ways that SE considers quality:

The quality of the product (product view)

The quality of the process (manufacturing view)

The quality of the product in the context of a business 
environment (user view)

The results of the first two are termed the “technical value 
of a system”; The latter is the “business value of a system”

37



The Quality of the 
Product

Users judge a system on external characteristics

correct functionality, number of failures, types of failures

Developers judge the system on internal characteristics

types of faults, reliability, efficiency, etc.

Quality models can be used to relate these two views

An example is McCall’s quality model

This model can be useful to developers: want to increase 
“reliability” examine your system’s “consistency, accuracy, and 
error tolerance”

38



McCall’s Quality Model 39



The Quality of the 
Process (I)

Quality of the development and maintenance process is as 
important as the product quality

The development process needs to be modeled

40



The Quality of the 
Process (II)

Modeling will address questions such as

What steps are needed and in what order?

Where in the process is effective for finding a particular kind 
of fault?

How can you shape the process to find faults earlier?

How can you shape the process to build fault tolerance into a 
system?

41



The Quality of the 
Process (III)

Models for Process Improvement

SEI’s Capability Maturity Model (CMM)

ISO 9000

Software Process Improvement and Capability dEtermination 
(SPICE)

42



Business Environment 
Quality (I)

The business value being generated by the software system

Is it helping the business do things faster or with less people?

Does it increase productivity?

To be useful, business value must be quantified

43



Business Environment 
Quality (II)

A common approach is to use “return on investment” (ROI)

Problem: Different stakeholders define ROI in different 
ways!

Business schools: “what is given up for other purposes”

U.S. Government: “in terms of dollars, reducing costs, 
predicting savings”

U.S. Industry: “in terms of effort rather than cost or dollars; 
saving time, using fewer people”

44



Business Environment 
Quality (III)

Differences in definition means that one organization’s ROI 
can NOT be compared with another organization’s ROI 
without careful analysis

45



SE-Related Sites/Blogs

slashdot.org; joelonsoftware.com

http://www.tbray.org/ongoing/

stackoverflow.com; loudthinking.com, semat.org

Humor:

xkcd.org, The Order of the Stick, thedailywtf.com

Please send me others that you find useful

46

http://www.semat.org/
http://www.semat.org/
http://www.giantitp.com/comics/oots0001.html
http://www.giantitp.com/comics/oots0001.html


Coming Up Next

Lecture 3: Pleasing Your Customer

Chapter 1 of Pilone & Miles

Lecture 4: Introduction to Concurrency

Chapter 1 of Breshears

47


