The Next Iteration

Kenneth M. Anderson
University of Colorado, Boulder
CSCIl 5828 — Lecture 25 — 04/14/2009

© University of Colorado, 2009




(Goals

» Review material from Chapter 10 of Pilone & Miles

» The Next lteration
» Planning
» Recalculating Velocity
» Talking with your Customer
» Dealing with Change
» Using Third Party Code




The Next lteration

» You have work to do to get ready for the next iteration

» Indeed, given the material covered in Lecture 24 and the
Issues we’ll discuss today

» a prudent team will allocate at least a day, if not two,

» to all the tasks that need to be performed at the end of an
iteration

» After your iteration review is complete,

» your biggest job is planning for the next iteration




Planning

» Elements of Planning
» How much work is left over from the previous iteration?
» |s the customer satisfied with the work accomplished?
» What bugs have been found by the testing team?
» What new stories were (previously) planned for this iteration?

» Does the customer have anything new for you?




First Step: Estimates

» Your first task is to revisit all prior estimates of all user
stories (both existing and new)

With at least one iteration under your belt, you are
» better prepared to decompose stories into tasks

» better prepared to play planning poker and assign estimates

» You may have spent a lot of time in your first iteration
performing set-up and configuration tasks

various aspects of the system will now be in place and that
will allow you to reduce some of your prior estimates




Second Step: Velocity

» You now need to recalculate your velocity
> |f
» estimated work = developers x working days x old velocity
» then

» new velocity = actual work / (developers x working days)




» Back in chapter 3, we calculated

3 devs x 20 days per iteration x 0.7 velocity = 42 days
That was 42 days of potential work per iteration

» In actuality, our team managed to complete 38 days worth
of work during the first iteration

38 days actual work / (3 devs x 20 days) = 0.6333

New velocity: 0.6 (You can use .6333 if you want)

» Remember: 0.7 was just a guess

» New estimate for next iteration: 3 x 20 x 0.6 = 36 days




Step 3: Big Board

» Now you need to prepare the big board for the next iteration

The book recommends taking a picture of the old board
before taking it down (you can then archive the picture)

» All stories and tasks should have new estimates

All stories should have priorities that have been reviewed by
the customer and updated if needed

» Allocate stories for the next iteration taking into account the
new value for estimated work

» Finally, present new plan for iteration to customer




Step 4: Disaster?

» In most cases, the customer will approve the plan and you'll
be ready to go when Monday comes around

» Every now and then, the customer will do what customers
do best:

» Change Everything!
» Disaster?

» NO!

» Listen to the change requests, create stories and tasks,
assign estimates, get priorities, create new plan, then go!




» In the book, the customer springs a request that
requires the team to pick up a library developed by another
company
integrate that software into our system

demo the integrated functionality at the end of the next
iteration

» The team has to drop everything and re-plan

One smart thing they do is to give a large estimate to the task
of integrating the new software

» Smart because: you have to build it, learn it, code to it & test it!




Example, continued

» The team learns the library API, writes code against it, and
their system hangs

» As a result, they now have to debug third party code
(fortunately they have the source code)
If they didn’t, they would have to either
» submit a bug report and hope for a fix

» drop the library and create its functionality from scratch

» Ultimately, you are responsible for all the code you deliver
with your system; trust no one and test extensively




Example, continued

» There are risks but reuse is almost always a GOOD thing

Consider, the libraries that come wit

N modern PLs

» Recently | wrote an app that searches twitter for “tweets”

that match particular criteria; it took

Reused the following:
» Twitter's Search API

me less than two days

» 10, json, os, sys, time and urllib modules from python

» list and map data structures, list comprehensions, and
functional programming technigques from python




Wrapping Up

» Before moving on to the next iteration
» create new estimates for all tasks and stories
» get new priorities from customer
» calculate velocity based on performance
» allocate stories based on updated velocity
» get customer approval

» Welcome change; your process supports it!




Coming Up

» Lecture 26: Alternate approaches to Concurrency

» No reading assignment
» MapReduce

» Agent model of Concurrency

» Examples from Erlang and Scala
» Lecture 27: Bugs
» Chapter 11 of Head First Software Development




