
© University of Colorado, 2009

Testing &
Continuous Integration
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 19 — 03/17/2009

1

Goals

Review material from Chapter 7 of Pilone & Miles

Testing of Systems

unit tests, integration tests, system tests, acceptance tests

Testing of Code

Black Box

Gray Box

White Box

Code Coverage

Continuous Integration

2

Testing

Testing is a critical element of a larger software engineering
concern / process known by many names

software quality control / software quality assurance

validation and verification

validation: are we building the right product?

verification: does “foo” meet its specification?

where “foo” can be code, a model, a design diagram, a
requirement, …

At each stage, we need to verify that the thing we produce
accurately represents its specification

3

Terminology

An error is a mistake made by an engineer

A fault is a manifestation of that error in the code

A failure is an incorrect output/behavior that is caused by
executing a fault

Testing attempts to surface failures in our software systems

Debugging attempts to associate failures with faults so they
can be removed from the system

If a system passes all of its tests, is it free of all faults?

4

No!

Faults may be hiding in portions of the code that only rarely
get executed

“Testing can only be used to prove the existence of faults not
their absence” or “Not all faults have failures”

Sometimes faults mask each other; this is particularly insidious

However, if we do a good job in creating a test set that
covers all functional capabilities of a system
covers all code using a metric such as “branch coverage”

Then, having all tests pass increases our confidence that
our system has high quality and can be deployed

5

6Looking for Faults

All possible states/behaviors of a system

7Looking for Faults

Tests are a way of sampling the behaviors of a software
system, looking for failures

7Looking for Faults

Tests are a way of sampling the behaviors of a software
system, looking for failures

As you can see,
its not very

comprehensive

8One way forward? Fold

The testing literature advocates folding the space into
equivalent behaviors and then sampling each partition

What does that mean? 9

Consider a simple example like the greatest common
denominator function

int gcd(int x, int y)
At first glance, this function has an infinite number of test cases

But lets fold the space
x=6 y=9, returns 3, tests common case

x=2 y=4, returns 2, tests when x is the GCD

x=3 y=5, returns 1, tests two primes

x=9 y=0, returns ?, tests zero

x=-3 y=9, returns ?, tests negative

Completeness

From this discussion, it should be clear that “completely”
testing a system is impossible

So, we settle for heuristics

attempt to fold the input space into different functional
categories

then create tests that sample the behavior/output for each
functional partition

As we will see, we also look at our coverage of the underlying
code; are we hitting all statements, all branches, all loops?

10

Continuous Testing

Testing is a continuous process that should be performed at
every stage of a software development process

Recall our requirements gathering process that continually
queried the user, “Did we get this right?”

Recall our emphasis on iteration throughout the entire
development process

at the end of each iteration, we check our results to see if what
we built is meeting our requirements

11

Testing the System (I)

Unit Tests

Tests that cover low-level aspects of a system

For each module, does each operation perform as expected

Integration Tests

Tests that check that modules work together in combination

Most projects on schedule until they hit this point

All sorts of hidden assumptions are surfaced when code written
by different developers are used in tandem

Lack of integration testing has led to spectacular failures

12

Testing the System (II)

System Tests

Tests performed by the developer to ensure that all major
functionality has been implemented

Have all user stories been implemented and function correctly?

Acceptance Tests

Tests performed by the user to check that the delivered
system meets their needs

In large, custom projects, developers will be on-site to install
system and then respond to problems as they arise

13

Multi-Level Testing

Once we have code, we can perform three types of tests

Black Box Testing

Does the system behave as predicted by its specification

Grey Box Testing

Having a bit of insight into the architecture of the system, does
it behave as predicted by its specification

White Box Testing

Since, we have access to most of the code, lets make sure we
are covering all aspects of the code: statements, branches, …

14

15

Black Box Testing

System

A black box test passes input to a system, records the
actual output and compares it to the expected output

15

Black Box Testing

SystemInput

A black box test passes input to a system, records the
actual output and compares it to the expected output

15

Black Box Testing

SystemInput Actual Output

A black box test passes input to a system, records the
actual output and compares it to the expected output

15

Black Box Testing

SystemInput Actual Output

Spec

A black box test passes input to a system, records the
actual output and compares it to the expected output

15

Black Box Testing

SystemInput Actual Output

Spec Expected Output

A black box test passes input to a system, records the
actual output and compares it to the expected output

15

Black Box Testing

SystemInput Actual Output

Spec Expected Output

A black box test passes input to a system, records the
actual output and compares it to the expected output

== ??

16Results

if actual output == expected output

TEST PASSED

else

TEST FAILED

Process

Write at least one test case per functional capability

Iterate on code until all tests pass

Need to automate this process as much as possible

Black Box Categories

Functionality

User input validation (based off specification)

Output results

State transitions

are there clear states in the system in which the system is
supposed to behave differently based on the state?

Boundary cases and off-by-one errors

17

Grey Box Testing

Use knowledge of system’s architecture to create a more
complete set of black box tests

Verifying auditing and logging information

for each function is the system really updating all internal state
correctly

Data destined for other systems

System-added information (timestamps, checksums, etc.)

“Looking for Scraps”

Is the system correctly cleaning up after itself

temporary files, memory leaks, data duplication/deletion

18

White Box Testing

Writing test cases with complete knowledge of code

Format is the same: input, expected output, actual output

But, now we are looking at

code coverage (more on this in a minute)

proper error handling

working as documented (is method “foo” thread safe?)

proper handling of resources

how does the software behave when resources become
constrained?

19

Code Coverage (I)

A criteria for knowing white box testing is “complete”

statement coverage

write tests until all statements have been executed

branch coverage (aka edge coverage)

write tests until each edge in a program’s control flow graph
has been executed at least once (covers true/false conditions)

condition coverage

like branch coverage but with more attention paid to the
conditionals (if compound conditional ensure that all
combinations have been covered)

20

Code Coverage (II)

A criteria for knowing white box testing is “complete”

path coverage

write tests until all paths in a program’s control flow graph have
been executed multiple times as dictated by heuristics, e.g.,

for each loop, write a test case that executes the loop

zero times (skips the loop)

exactly one time

more than once (exact number depends on context)

21

A Sample Ada Program to Test
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;
if (Y < 20 and then X mod 2 = 0) then

Y := Y + 20;
else

Y := Y – 20;
end if;
return 2 ∗ X + Y;

end P;

P’s Control Flow Graph (CFG)

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

White‐box Tes?ng Criteria
Statement Coverage

  Select a test set T such that, by executing P for each d in T, 
each elementary statement of P is executed at least once

All‐Statements Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

All‐Statements Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-statements-adequate test set:

All‐Statements Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-statements-adequate test set:
(X = 20, Y = 10)

All‐Statements Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-statements-adequate test set:
(X = 20, Y = 10)
(X = 20, Y = 30)

White‐box Tes?ng Criteria
Edge Coverage

  Select a test set T such that, by executing P for each d in T, 
each edge of P’s control flow graph is traversed at least 
once

All‐Edges Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

All‐Edges Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-edges-adequate test set:

All‐Edges Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-edges-adequate test set:
(X = 20, Y = 10)

All‐Edges Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-edges-adequate test set:
(X = 20, Y = 10)
(X =15, Y = 30)

White‐box Tes?ng Criteria
Condition Coverage

  Select a test set T such that, by executing P for each d in T, 
each edge of P’s control flow graph is traversed at least 
once and all possible values of the constituents of 
compound conditions are exercised at least once

All‐Condi?ons Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

All‐Condi?ons Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-conditions-adequate test set:

All‐Condi?ons Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-conditions-adequate test set:
(X = 20, Y = 10)

All‐Condi?ons Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-conditions-adequate test set:
(X = 20, Y = 10)
(X = 5, Y = 30)

All‐Condi?ons Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-conditions-adequate test set:
(X = 20, Y = 10)
(X = 5, Y = 30)
(X = 21, Y = 10)

White‐box Tes?ng Criteria
Path Coverage

  Select a test set T such that, by executing P for each d in T, 
all paths leading from the initial to the final node of P’s 
control flow graph are traversed at least once

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

All‐Paths Coverage of P

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

TF

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)
(X = 35, Y = 10)
…

Code Coverage Tools

Doing this by hand would be hard!

Fortunately, there are tools that can track code coverage
metrics for you

typically just statement and branch coverage

The book covers one tool that is part of a larger system called
Cruise Control

These systems typically generate reports that show the
percentage of the metric being achieved

they will also typically provide a view of the source code
annotated to show which statements and conditions were “hit” by
your test suite

76

Testing Automation (I)

It is important that your tests be automated

More likely to be run

More likely to catch problems as changes are made

As the number of tests grow, it can take a long time to run
the tests, so it is important that the running time of each
individual test is as small as possible

If that’s not possible to achieve then segregate long running
tests from short running tests

execute the latter multiple times per day, execute the former at
least once per day (they still need to be run!!)

77

Testing Automation (II)

It is important that running tests be easy

testing frameworks allow tests to be run with a single
command

often as part of the build management process (as shown in
last lecture)

The book presents details on JUnit (but there are lots of
testing frameworks out there)

78

Continuous Integration

Since test automation is so critical, systems known as
continuous integration frameworks have emerged

The book covers one called CruiseControl

<http://cruisecontrol.sourceforge.net/>

Continuous Integration (CI) systems wrap version control,
compilation, and testing into a single repeatable process

You create/debug code as usual;

You then check your code and the CI system builds your code,
tests it, and reports back to you

79

http://cruisecontrol.sourceforge.net
http://cruisecontrol.sourceforge.net

Wrapping Up

Testing is one element of software quality assurance

Verification and Validation can occur in any phase

Testing of Code involves

Black Box, Grey Box, and White Box tests

All require: input, expected output (via spec), actual output

White box additionally looks for code coverage

Testing of systems involves

unit tests, integration tests, system tests and acceptance tests

Testing should be automated and various tools exists to integrate testing
into the version control and build management processes of a
development organization

80

Coming Up

Lecture 20: Deadlock

Read Chapter 6 of the Concurrency textbook

Lecture 21: Test-Driven Design / Development

Read Chapter 7 of Head First Software Development

81

