Bulld Management

Kenneth M. Anderson
University of Colorado, Boulder
CSCIl 5828 — Lecture 18 — 03/12/2009

© University of Colorado, 2009

(Goals

» Review material from Chapter 6.5 of Pilone & Miles
» Build Management
» How do you build your code

» Examples

» make
» Ant
» |IDEs

Build Management (|)

» The process for constructing a system should be engineered

» What are the steps to build a system?

> W
> W
> W

nat subsystems need to be built?

nat libraries are needed?

nat resources are required?

Build Management (lI)

» The process for constructing a system should be engineered
» Who is authorized to build a system?
» Small projects: individual programmers

» Large projects: build managers and/or configuration managers

Build Management (lIl)

» The process for constructing a system should be engineered

» When are system builds performed?

» e.g. perhaps a system is so large that it can only be built at
night when there are enough resources available...

Build Management (IV)

» Most modern programming environments have build
management capabilities built into them

For instance, a Java development environment typically has the
notion of a “project” and it can compile all project files in the
correct order (and it only compiles files dependent on a change)

» These capabilities free developers from accidental difficulties
having to remember the correct compilation order

correctly identifying all files dependent on a change

Make: The Granddaddy of

Build Management Systems

» In Unix, a common build management tool is “make”

» Make provides very powerful capabilities via three types of
specification styles

» declarative
» imperative
» relational
» These styles are combined into one specification

» “the make file”

Why talk about Make"?

» In modern projects, make is not used directly
IDEs: have build management features built in
modern build tools: ant, maven, etc. operate at higher level

open source environments: autoconf and configure generate
makefiles: developers write configure specs, autoconf does

the rest

» The reason?

The same reason calculus students learn how to do limits the
“hard way” before they are taught ['Hbpital's rule

http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule
http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Specification Styles”?

» Operational (or Imperative)

» Described according to desired actions

» Usually given in terms of an execution model
» Descriptive (or Declarative)

» Described according to desired properties

» Usually given in terms of axioms or algebras
» Structural (or Relational)

» Described according to desired relationships

» Usually given in terms of a graph
» e.g. UML class diagrams

make Specification Language

» Hybrid Declarative/Imperative/Relational
» Dependencies are Relational
» Make specifies dependencies between artifacts
» Rules are Declarative
» Make specifies rules for creating new artifacts

» Actions are Imperative

» Make specifies actions to carry out rules

» This is true of ant and other tools with similar specs.

Example makefile

Target1: Target2 Target3
\t ActionT

\t Action?2
\t ...
\t ActionN
Target2: Target5 Target6
\t Action3

Target3: Target5 Target7/
\t Actiond

... largetN

Example maketile

Target1: Target2 Target3 ... TargetN

\t Action A Makefile consists of a set of rules.
\t Action2
\t Each rule contains a target followed by a

colon followed by a list of dependencies

\t ActionN

_ Each subsequent line of a rule begins with
TargetZ' Target5 TargetG a tab character (required) followed by an

\t Action3 action

TargetS: TargetS Target7 If a dependency changes, make invokes a
\t Action4 rule's action to recreate the target

What would happen if Target5 changed?

Power from Integration

» make is well integrated into the Unix environment

Targets and Dependencies are file names

Actions are shell commands

program: main.o input.o output.o
g++ main.o input.o output.o -0 program

main.o: main.cpp defs.h
g++ -C main.cpp

input.o: input.cpp defs.h
g++ -c input.cpp

output.o: output.cpp defs.h
g++ -c output.cpp

Power from Integration

» make is well integrated into the Unix environment
Targets and Dependencies are file names

Actions are shell commands When you realize that any

program: main.o input.o output.o shell command can go
g++ main.o input.o output.o -o program here, you begin to grok

main.o: main.cpp defsﬂ/the power of make
g++ -C main.cpp

input.o: input.cpp defs.h It is possible to automate
g++ -C input.cpp the creation and
output.o: output.cpp defs.h deployment of large

g++ -Cc output.cpp systems with make

Why use make at all”

» Why use all the complexity of multiple specification styles
when ultimately make just invokes shell commands?

Why not just write a shell script?

#!/bin/bash

g++ -C main.cpp

g++ -C input.cpp

g++ -C output.cpp

g++ main.o input.o output.o -o program

Why use make at all”

» Why use all the complexity of multiple specification styles
when ultimately make just invokes shell commands?

Why not just write a shell script?

#!/bin/bash

g++ -C main.cpp

g++ -C input.cpp

g++ -C output.cpp

g++ main.o input.o output.o -o program

N

What style does this specification use?

Why not use a shell script?

» The (Primary) Answer

A shell script will compile each file every time its run... even if
the file has not changed since the last compilation!

» When building large systems, such an approach does not
scale!

You only want to recompile changed files and the files that
depend on them

» Make is much “smarter”

by only recompiling changed files and their dependencies,
make can scale to building large software systems

make wrap-up

» Build management has been around a long time

» make was created by Stuart Feldman in 1977
» Feldman was part of the group that created Unix at Bell Labs
» He was an author of the first Fortran 77 compiler

» Now works for Google as Vice President of Engineering

» When you click “build” in your IDE and it builds your
project, you have make to thank

The Textbook Scenario

» The book highlights another reason for build management

Configuration Management is not enough to support the day
to day tasks of software development

If a new developer joins the team, simply checking out a copy
of HEAD is not enough

» How do | compile the system?
» A search finds five main() methods, which one do | invoke?

» What configuration do | have to do before the system will run?

Building your project in one

Step

» Build management is all about reducing the complexity of
creating your system

» You do some work up front
» Then invoke a single command: “make” or “ant”
» Then run your system
» As the book says, modern applications are complex beasts

» consisting of not just code, but libraries (aka frameworks),
resources (images, sounds, movies, etc.) and more

¥ DEVICES
By
£ Disk

¥ SEARCH FOR

) Yesterday
- Past Week
(& Al images
& Al Mowies
(@] AVl Documents

Neon Tango Folder

OmniCraffle Professional OmniCraffle Professional

Open XML Converter Opera

Peggle Nights Photo Booth

| 2 Macintosh HD » (@ Applications

OmniOutliner Professional

Path Finder

P

PhotoStudio

Omnifocus

OmniWeb

PDFView

Pixelmator

S

laf

But look behind the curtain: Apps in Mac OS X Terminal

Jiriki:Applications $ 1s
1Password.app/

>cd toapp/

Acrobat Connect Add-in
Address Book.app/

Adobe Acrobat 7.0 Professional/
Adobe Bridge/

Adobe Creative Suite 2/
Adobe GolLive (S2/

Adobe Help Center.app/
Adobe Illustrator (CS2/
Adobe InDesign (S2/
Adobe Photoshop (S2/
Adobe Photoshop Elements 4.0/
Adobe Reader.app/

Adobe Stock Photos.app*
Alloy4.app/
Aperture.app/
AppZapper.app/
AppleScript/

Aspyr Game Agent.app/
Automator.app/

Avernum 5 f/

BBEdit.app/

Backup.app/

Bento.app/

Big Bang Board Games/

Mail.app/

MarsEdit.app/
Mathematica.app/

Microsoft AutoUpdate.app/
Microsoft Office 2004/
Monopoly Here & Now/

MyBook RAID Manager.app/

Neon Tango Folder/
NetNewsWire.app/
OmniDiskSweeper.app/
OmniFocus.app/

OmniGraffle Professional 4.app/
OmniGraffle Professional S5.app/
OmniOutliner Professional.app/
OmniWeb.app/

Open XML Converter.app/
Opera.app/

PDFView.app/

Path Finder.app/

Peggle Nights.app/i

Photo Booth.app/

PhotoStudio/

Pixelmator.app/

Preview.app/

Pukka.app/

Python 2.6/

" elole—lﬂil-l ﬁl-llaoﬁl-lii EEEEE—

A
-~

Apps are just directories whose names end in the
suffix .app; those pretty icons just live in a standard pre-
defined place in the “application bundle” or “package”

Adobe Pnotoshop tiements
l 4.0

Adobe Keaager

N N

¥ DEVICES
B yrw
Bl iDisk
2 Macintosh HD

¥ PLACKES
B Oeskeop
O Downloads \
wd Mail Downloads
& kena
:&_ Applications
7 Documenrts
B Movies

nlhmc

Automator

ano [_| Info.plist

Path

AQobe S1ock Photos Alloy4
{Applications/Automator.app/Contents /Resources

s

New Folder Cet info Delete

»¢d 1o ..
CodeResources AlertCautionicon.icns
Info.plist & AMILfe. tiff
Ll MacOos - 2 AMStartingPoints_.. cuments.workflow
Prglnfo S AMStartingPoints_.. ebpage.workflow
[Resources 2 AMStartingPoints_ . ebpage.workflow
version.plist Application Stub

A

~ Automator.icns
Automator.scriptSuite
Automator.scriptTerminology

“ AutomatorAction.icns

AutomatorConversionAction.icns

AutomatorDefinition, icns

AutomatorDocument.icns

ClisntDecs rintion nl e

A

v L Macintosh HD » [Applications » J* Automator » [Contents »] Resources = Automator.icns

L of 48 selecred, 41.01 CB available

Help Book directory path
Help Book main page CONTENT an

Automatortelp
Automator Help

- kon fle Automator.icns
Bundie identifier com.apple Automator
InfoDictionary version 60
Bundie name Automator
Bundie O5 Type code APPL
Bundie versions string, short 202
Bundie creator OS5 Type code ATM

Bundie version 160

_ Key o= Vakoe
AMDocumenmVersion 1
Localizavon mative development re English
» Document types s
Executable file Automator
Get Info string Automator version 2.0.2, Copyright 2004-2007 Apple Inc

Fs Caffeine

udra pre-

Search

v Name Automator.icns —
Kind Apple icor

mag
age

How complex?

» Lets take a look at the application bundle for
» OmniGraffle Pro

» The application | use to create all of my diagrams

» As we will see, it contains
» Code
» Frameworks, Libraries, Plugins, Scripts
» Images (tiff, png, icons, ...), color pickers (!)

» nib files (“frozen” objects), “localized” files for
Internationalization, etc.

http://www.omnigroup.com/applications/OmniGraffle/
http://www.omnigroup.com/applications/OmniGraffle/

Ant

» The book delves into the details of Ant

» Ant is a build system that is used mainly for Java-based
software development

» The specification is contained in an XML file called
“puild.xml”

» This specification consists of
» projects
» properties
» targets
» tasks

Projects

» The build.xml file exists to build a single project

» <project name="BeatBox” default="dist”>

» |t defines the name of the project and its default target

» The default target is the target that gets executed if “ant” is
iInvoked with no arguments

Properties

» Properties allow you to define values that might change
» <property name= “version” value = “1.1”7 />
» <property name= “src” location= “src” />
Note: location field supports both absolute and relative paths
» Build scripts == Code

Since build scripts are executable, we want to apply best
practices when writing them

» So, if something about a build script can change stick it in a
properties (i.e. variable)

largets

» A target is an “intermediate” step in the build process

» In make, they represented files and contained the actions
required to produce the associated file

» e.g. “to create foo.0 compile foo.c”
» In ant, targets typically represent stages
» init, compile, test, package, deploy, clean
» Targets have names and dependencies and group tasks

» <target name= “compile” depends= “init”>

» Tasks are actions that need to be performed to complete
the goal of its associated target

» |f an “init” target needs to create a bunch of directories and
copy a bunch of files into them then its tasks might look like

<mkdir dir= “${build.dir}” />

<copy todir="${build.dir}/metis/gui/help">
<fileset dir="gui/help"/>

</copy>

» ${var} is a prop. reference; You can create your own tasks

Good Build Scripts will. ..

» reference required libraries

» compile your project

» generate documentation

» run your application

» check out code, run tests, send e-maiil, etc.

> (all via supplied tasks or custom tasks)

Examples

» InfiniTe build.xml file
» metis build.xml file
» Build management in XCode

» Visual Studio, Eclipse, NetBeans have similar capabilities

Why do all this?

» We’ve touched on the fact that build management reduces
accidental difficulties but the primary reason is that

» build management lets you focus on writing code

It automates repetitive tasks so you can focus on completing
user stories and making progress

» In addition, it allows you to tackle integration and
deployment issues early in the life cycle

and ensures that this process stays stable throughout the
project; if someone “breaks the build” you find out quickly!

Wrapping Up

» Building a project should be repeatable and automated
All but the smallest projects have a nontrivial build process

You want to capture and automate the knowledge of how to
build your system, ideally in a single command

» Build scripts are code (executable specifications) that need
to be managed just like other pieces of code

» Use a build tool to script building, packaging, testing, and
deploying your system

Most IDEs have an integrated build system

Coming Up

» Lecture 19: Testing and Continuous Integration
» Read Chapter 7 of Head First Software Design

» Lecture 20: Deadlock
» Read Chapter 6 of the Concurrency textbook

