
© University of Colorado, 2009

Good-Enough
Design
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 11 — 02/17/2009

1

Goals

Review material from Chapter 5 of Pilone & Miles

Software Design

Need for Good OO A&D principles

SRP: Single Responsibility Principle

DRY: Don’t Repeat Yourself Principle

2

iSwoon in Trouble

The previous chapter presents a design for associating
dates and events that was causing problems

Date objects maintain a list of its planned events

An Event object is a “dumb data holder” storing only a name

It has no logic of its own

Date objects provide methods that internally add events to a
planned date; The Date object contains information about
what events are allowed on a particular date

The UML diagram is shown on the next slide

3

4

+ seeMovie() : void
+ goToRestaurant() : void
+ orderFlowers() : void
+ goOnDate() : boolean

- validateEvent(event: Event) : boolean

Date

- validateEvent(event: Event) : boolean
FirstDate

- validateEvent(event: Event) : boolean
SecondDate

- validateEvent(event: Event) : boolean
ThirdDate

+ getName(): String
Event

+ getName() : String
- name : String = "SeeMovie"

SeeMovieEvent

+ getName() : String
- name : String = "GoToRestaurant"

GoToRestaurantEvent

+ getName() : String
- name : String = "OrderFlowers"

OrderFlowersEvent

events

*

UML Primer:

Each rectangle represents a class that can have attributes and
methods. A “+” symbols refers to “public” visibility; “-” indicates
private visibility. The “*” means zero or more. The “large triangle”
indicates inheritance. The arrow head indicates “one way navigation”;
in the diagram above Dates know about Events while Events are
blissfully unaware of Dates

UML Diagram

5

validateEvent(...)

:System

:FirstDate

:GoToRestaurantEvent

«create»

goToRestaurant(...)

«create»

validateEvent(...)

getName()

seeMovie(...)
«create» :SeeMovieEvent

getName()

return True

return True

goOnDate()

UML Sequence Diagram

6Bad Design (I)

This design has a lot of problems

The Event class is completely useless

Why not have Date store an array of strings?

Date’s API is pretty bad

Event creation methods are specified for all possible events;
that means that some dates have event creation methods for
events that are not valid for them!

The Date class has a list of allowable events but doesn’t show
it on the diagram (or it doesn’t show the list of planned events;
either way it has two lists but only shows one)

Bad Design (II)

But those are relatively minor issues

The main reason why this design is bad is that its inflexible
with respect to the types of changes that occur regularly for
this application domain

It can’t easily handle the addition of a new type of Event

It can’t easily handle changing the name of an existing Event

It can’t easily handle the changing of what events are valid for
what dates

7

Good Design

A primary goal in OO A&D is producing a design that makes

likely changes, straightforward

typically by adding a new subclass of an existing class

or by adding an object that implements a known interface

no need to recompile the system or even it bring it down

You can’t anticipate arbitrary changes and there is no
reason to invest time/$$ into planning for unlikely changes

So use good OO A&D principles to handle likely changes

8

Single Responsibility
Principle (SRP) (I)

The Date class has multiple responsibilities

tracking the events planned for a date

tracking the events allowed for a date

It has multiple reasons to change

The single responsibility principle says

Every object in your system should have a single
responsibility and all the object’s services should be focused
on carrying out that single responsibility

This is also known as “having high cohesion”

9

SRP (II)

Granularity?

When we say “responsibility” we are not talking about low
level concerns, such as

“insert element e into array a at position i”

but design level concerns, such as

“classify documents by keyword”

“store client details”

“manage itinerary of Jack and Jill’s second date”

10

SRP (III)

The existing iSwoon design is bad because each time we
add a new event

We need to add a new Event subclass

Add a new method to Date

Update each of Date’s subclasses (cringe!)

We need to migrate to a design, in which the addition of a
new type of event results in the addition of a new Event
subclass and nothing more

11

Textual Analysis (I)

One way of identifying high cohesion in a system is to do
the following

For each class C

For each method M

Write “The C Ms itself”

Examples

The Automobile drives itself

The Automobile washes itself

The Automobile starts itself

12

Textual Analysis (II)

Sometimes you need to include parameters in the sentence

The CarWash washes the Automobile itself

If any of these sentences doesn’t make sense then
investigate further

You may have discovered a service that belongs to a
different responsibility of the system and should be moved
to a different class

This may require first creating a new class before
performing the move

13

Textual Analysis (III)

Textual analysis is a good heuristic

While its useful for spot checking a design, its not perfect

But the underlying principle is sound

Each class in your design should “pull its weight”

have a single responsibility with a nice balance of both data
AND behavior for handling that responsiblity

14

Other Problems

The iSwoon design also has problems with duplication of
information (indeed duplication can often lead to classes
with “low cohesion” that violate SRP

The duplication in iSwoon is related to Event Types

The names of event types appear in

Event subclass names

The name attribute inside of each event subclass

The method names in Date

In addition, duplication occurs with validateEvent() in each of
the Date subclasses

15

Don’t Repeat Yourself (I)

The DRY principle

Avoid duplicate code by abstracting out things that are
common and placing those things in a single location

Basic Idea

Duplication is Bad!

At all levels of software engineering: Analysis, Design, Code,
and Test

16

DRY (II)

We want to avoid duplication in our requirements, use
cases, feature lists, etc.

We want to avoid duplication of responsibilities in our code

We want to avoid duplication of test coverage in our tests

Why?

Incremental errors can creep into a system when one copy is
changed but the others are not

Isolation of Change Requests: We want to go to ONE place
when responding to a change request

17

DRY (II)

We want to avoid duplication in our requirements, use
cases, feature lists, etc.

We want to avoid duplication of responsibilities in our code

We want to avoid duplication of test coverage in our tests

Why?

Incremental errors can creep into a system when one copy is
changed but the others are not

Isolation of Change Requests: We want to go to ONE place
when responding to a change request

17

DRY (II)

We want to avoid duplication in our requirements, use
cases, feature lists, etc.

We want to avoid duplication of responsibilities in our code

We want to avoid duplication of test coverage in our tests

Why?

Incremental errors can creep into a system when one copy is
changed but the others are not

Isolation of Change Requests: We want to go to ONE place
when responding to a change request

17

Example (I)

Duplication of Responsibility

“The dog door should automatically close 30 seconds after it has
opened”

Where should this responsibility live?

It would be easy to put this responsibility in the clients

But it really should live in DogDoor (which method?)

18

recognize(bark: Bark)
BarkRecognizer

pressButton()
Remote

open()
close()
isOpen(): boolean
getAllowedBark(): Bark
setAllowedBark(bark: Bark)

open: boolean
DogDoor

door door

Example (II)

DRY is really about ONE requirement in ONE place

We want each responsibility of the system to live in a single,
sensible place

This applies at all levels of the project, including
requirements

Imagine a set of requirements for the dog door…

19

Example (III)

The dog door should alert the owner when something inside the
house gets too close to the dog door

The dog door will open only during certain hours of the day

The dog door will be integrated into the house’s alarm system to
make sure it doesn’t activate when the dog door is open

The dog door should make a noise if the door cannot open because
of a blockage outside

The dog door will track how many times the dog uses the door

When the door closes, the house alarm will re-arm if it was active
before the door opened

20

Beware of Duplicates!!!

Example (IV)

The dog door should alert the owner when something inside the
house gets too close to the dog door

The dog door will open only during certain hours of the day

The dog door will be integrated into the house’s alarm system to
make sure it doesn’t activate when the dog door is open

The dog door should make a noise if the door cannot open because
of a blockage outside

The dog door will track how many times the dog uses the door

When the door closes, the house alarm will re-arm if it was active
before the door opened

21

Example (V)

The dog door should alert the owner when something is too close to
the dog door

The dog door will open only during certain hours of the day

The dog door will be integrated into the house’s alarm system

The dog door will track how many times the dog uses the door

Duplicates removed!

22

Example (VI)

Ruby on Rails makes use of DRY as a core part of its design

focused configuration files; no duplication of information

for each request, often single controller, single model update, single view

But prior to Ruby on Rails 1.2 there was duplication hiding in the
URLs used by Rails applications

POST /people/create # create a new person

GET /people/show/1 # show person with id 1

POST /people/update/1 # edit person with id 1

POST /people/destroy/1 # delete person with id 1

23

Example (VII)

The duplication exists between the HTTP method name and the
operation name in the URL

POST /people/create

Recently, there has been a movement to make use of the four major
“verbs” of HTTP

PUT/POST == create information (create)

GET == retrieve information (read)

POST == update information (update)

DELETE == destroy information (destroy)

These verbs mirror the CRUD operations found in databases
Thus, saying “create” in the URL above is a duplication

24

Example (VIII)

In version 1.2, Rails eliminates this duplication for something
called “resources”

Now URLs look like this:
POST /people

GET /people/1

PUT /people/1

DELETE /people/1

And the duplication is logically eliminated
Disclaimer: … but not actually eliminated… Web servers do not universally
support PUT and DELETE “out of the box”. As a result, Rails uses POST

POST /people/1 ; Post-Semantics: DELETE

25

Other OO Principles

Classes are about behavior
Emphasize the behavior of classes over the data

Encapsulate what varies
Use classes to achieve information hiding in a design

One reason to change
Promotes high cohesion in a design

Code to an Interface
Promotes flexible AND extensible code

Open-Closed Principle
Classes should be open for extension and closed for modification

26

Take CSCI 5448 next
Fall for more details!

New iSwoon Design 27

+ addEvent(Event e): boolean
+ goOnDate(): boolean

- dateNumber: int
Date

Event(allowedDates : int[], description : String
+ dateSupported(dateNo : int) : boolean

- allowedDates : int[]
- description : String

Event

events

*

Subclasses eliminated; Events now keep track of what
Dates they are allowed on; When you add an event to a
Date, Date calls Event.dateSupported() to validate it

You can easily add a new type of Event; just create a new
instance of Event with a different description; nothing else
changes! To add a new date, just increase the number

Impact on Tasks 28

With the right design, multiple tasks estimated to take days
may take only one (or less than one)

Task: Create Send Flowers

Event

Estimate: 2 days

Task: Create a Book

Restaurant Event

Estimate: 3 days

Task: Add Order Cab Event

Estimate: 2 days

A great design helps you be more productive!

Discussion 29

The underlying message of Chapter 5 is that everyone on
your team needs to understand good OO A&D principles

On a daily basis, you look for ways in which the design can
be improved

Small changes can occur via refactoring

Large changes need to become tasks and tracked like all
others

You welcome such changes since they’ll make life easier
and more productive down the line

Review

The remainder of the lecture will be devoted to reviewing

Question 3.2

Answers to Review 2

Answers to Homework 1

30

Question 3.2

3.2. ELEMENT = (up -> down -> ELEMENT) accepts an
"up" action and then a "down" action.

Using parallel composition and the ELEMENT process describe a
model that can accept up to four "up" actions before a "down"
action. Draw a structure diagram for your solution.

Looks like a simple problem. Indeed it is simple if you
DON’T use parallel composition (LTS on next slide)

31

ELEMENT = ELEMENT[0],
ELEMENT[i:0..4] = (when (i < 4) up -> ELEMENT[i+1] |
 when (i > 0) down -> ELEMENT[i-1]).

Simple Goal 32

Question 3.2 (II)

But, this question asks that we use multiple instances of
this process

ELEMENT = (up -> down -> ELEMENT).

to create a parallel composition that can do the same thing
that the FSP on the previous page can do.

In order to do this, we’ll need at least four instances of
ELEMENT. Lets start with:

33

ELEMENT = (up -> down -> ELEMENT).

||FOURUP = (a: ELEMENT || b: ELEMENT || c: ELEMENT || d: ELEMENT).

34

Here we can see that four processes with two actions
each (with no shared actions) produce an LTS with 16
states (2 * 2 * 2 * 2) and on the surface very complex
behavior.

35

But the complexity is only skin deep. In actuality, each process
can only go “up” followed by a “down”. The complexity comes
from allowing these simple behaviors to arbitrarily interleave.

What we need to do is relabel actions such that sharing occurs
between the processes, reducing complexity, and moving us
towards the behavior we want to see: 4 “ups” before a “down”.

36Structure Diagram?

A B C D
up

down

up

up

up down

downdown

c.up c.down

b.up b.down

a.up

a.down

||FOURUP

d.up

d.down

No surprises here. Four instances of ELEMENT, no shared
actions, all actions become part of ||FOURUP’s alphabet

Approach 37

The approach we are going to take to solve this problem is
to tie the up and down actions of the various ELEMENT
instances such that one process cannot “go up” unless
another process “goes down”

To do this, lets start by tying a’s down action with b’s up
action.

The results?

ELEMENT = (up -> down -> ELEMENT).

||FOURUP = (a: ELEMENT || b: ELEMENT || c: ELEMENT || d: ELEMENT)
/{a.down/b.up}

38

A slightly less complicated LTS since a.down and b.up
still have to occur at the same time.

Lets do the same thing with {b, c} and {c, d}. That is
have b’s down be shared with c’s up, etc.

New FSP

Leads to a much simpler set of behaviors (next slide)

39

ELEMENT = (up -> down -> ELEMENT).

||FOURUP = (a: ELEMENT || b: ELEMENT || c: ELEMENT ||
d: ELEMENT) /{a.down/b.up, b.down/c.up, c.down/d.up}

Sharing more actions

40

Now we are seeing a major reduction in complexity. Because b
cannot go up until a comes down, c cannot go up until b comes
down, etc.

To see, load the spec and run the animation. Recall that underneath
this composition, we still have four simple processes.

41Structure Diagram?

Now we can see why the complexity has gone down. The
alphabet of ||FOURUP has been reduced from 8 actions to 5

A B C D

up

down

upupup

downdowndown

b.down c.down

a.down

a.up

||FOURUP

d.down

42

Now the magic
happens…

Run the animation very carefully and note that a can
perform its up operation four times before d is forced to run
its down operation

But that’s exactly the behavior we
are looking for! Four “up” actions
before a “down” action occurs

So...

Up and Down

We are almost finished; our second to last step is to rename
“a.up” to “up” and rename “d.down” to “down”

We get the same LTS as the last time but now in the
animation we see the actions “up” and “down”. But, we
have all these other actions getting in the way. What to do?

43

ELEMENT = (up -> down -> ELEMENT).

||FOURUP = (a: ELEMENT || b: ELEMENT || c: ELEMENT
|| d: ELEMENT) /{up/a.up, a.down/b.up, b.down/c.up,
c.down/d.up, down/d.down}.

Time to Hide

The last thing we need to do is hide all of the actions except
“up” and “down”; Our composed process will simply have
an alphabet of size 2

This produces the same LTS with a lot of “tau” actions

So, minimize that graph and you get…

44

ELEMENT = (up -> down -> ELEMENT).

||FOURUP = (a: ELEMENT || b: ELEMENT || c: ELEMENT
|| d: ELEMENT) /{up/a.up, a.down/b.up, b.down/c.up,
c.down/d.up, down/d.down} @ {up,down}.

45

The exact same LTS that we achieved without using
parallel composition!

Problem solved.

46Final Structure Diagram

A B C D

up

down

upupup

downdowndown

up

||FOURUP

down

The final process just has “up” and “down” as its alphabet;
we depend on the fact that a.up can run four times before
“d.down” has to be executed to achieve the desired behavior.

Coming Up

Lecture 12: Monitors and Condition Synchronization

Chapter 5 of Magee and Kramer

Lecture 13: Version Control

Chapter 6 of Pilone & Miles

Lecture 14 will be a review for the Midterm

Chapters 1-6 of Pilone & Miles

Chapters 1-5 of Magee and Kramer

47

