Course Overview

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 1 — 01/13/2009

© University of Colorado, 2008




(Goals

» Survey software engineering concepts, terminology and
techniques

» Emphasis on Agile Design Methods
» Will supplement with traditional/historical material as needed

» Take an in-depth look at model-based software
engineering techniques for dealing with

» concurrency
» software abstractions




CAETE Announcements

» In-Class Students
» CAETE has a busy studio schedule

» Be sure to exit promptly so next class can begin
» Food and drink are not technically allowed!
» They are tolerated as long as you keep the studio clean!

» Distance Students

» Textbooks can be ordered from the CU Bookstore
» Call 303-492-6411 or 800-255-9168

» Or order on-line at <http://cubooks.colorado.edu/>



http://cubooks.colorado.edu
http://cubooks.colorado.edu

Due Dates

» In the past, due dates for CAETE students were one week
behind the due dates for in-class students

However, now that lectures are being made available to you
In a timely fashion, both in-class and distance students will
have the same due dates

» CAETE students need to have a “test proctor” to administer
the midterm for them

If you don’t know who your test proctor is, contact CAETE to
find out (Do this during the first week of classes!)




A bit about me...

» Associate Professor
At CU since July 1998

» Ph.D. at UC Irvine

» Research Interests
Software Engineering
Hypermedia and the Web

Web Engineering
REST-based Web Services




A little bit more...

» 22nd semester at CU (!!)

» 5th time teaching CSCI 5828

» Software Development Experience
» Approximately 16 systems, 30K — 100K LOC each
» Some industry experience with IBM & Unisys

» Experience with academic / industry collaboration




Class Participation

» | welcome contributions to the class by students
» both in lecture and off-line

» Feel free to interrupt me during lecture to ask questions!
» “Stupid questions” — No such thing!

» Engage in discussion otherwise we get the “silent tomb”
effect — Boring for you and me!

» If I’'m speaking too fast, stop me and ask me to slow down




Office Hours

» By appointment
» Send me e-mail at <kena@cs.colorado.edu>

» Will most likely meet with students in ECCS 127
» or in the faculty lounge on the 7th floor of the ECOT



mailto:kena@cs.colorado.edu
mailto:kena@cs.colorado.edu

Textbooks

"
C I aSS We bS Ite There are two required textbooks for 5828 this semester and one optional textbook.

Pilone and Miles's book “Head First Software Development” is another entry in
O'Reilly’'s excellent set of Head First books. We will use this book 1o introduce the
basic concepts and practices of modern software development including life cycles,
planning, requirements, design, development, testing, and configuration
management, | will supplement this material with material from other "more
academic” sources such as Fred Brook’s No Silver Bullet article and past textbooks
used from previous versions of this class. Between our textbook and this other
material, you will gain a comprehensive look at the software engineering field both
past and present.

Has a What’s New

a e Wit h an RSS ‘ Magee and Kramer's book “Concurrency. State Models & Java Programming” is
p g CONCURRENCY in its second edition and presents a model-based approach to designing and

JALE MDOLS &

PTIL implementing multi-threaded systems. It shows students the utility of software

feed th at O u Can w-“ models and how such models can be implemented. Finally, it provides software
y N § Y that allows us to construct, analyze, and visualize models of concurrent

R s x behavior for multi-threaded systems. Students will get a chance to use this

frw frw. f
use to stay current & softars i hratilycosiruc sofhwae model o concurent sstems s wel
" semester wojects.
with all course
announcements!

Daniel Jackson's book “Software Abstractions™ presents another example of using
model-based software engineering to tackle another difficult issue that arises in the
design and development of large software systems, namely software abstractions. Or,
put another way, what interface is your software system providing to the external world?
This textbook Is backed by a powerful set of software tools that will again allow
students to apply the techniques learned in lecture to real-world modeling problems,
including to issues that will arise in the design of their semester projects. This textbook
is optional as Prof. Anderson will present all the information you need 1o make use of
the associated tools that come with this book in lecture. However, | highly recommend
buying it as it formalizes an aspect of software engineering that is treated informally in
practically all software engineering textbooks!

<http://www.cs.colorado.edu/~kena/classes/5828/s09/>



http://www.cs.colorado.edu/~kena/classes/5828/s09/
http://www.cs.colorado.edu/~kena/classes/5828/s09/

Textbooks

Head First

Software
Development

J gia concepts
Ny g_'; that matter
2 stralght into Y :
et r beain -\
'
v I

ﬂﬂﬂﬂﬂ

O'REILLY"

Head First Software
Development

Dan Pilone & Russ Miles
First Published:; Jan 2008

Published by O’Reilly

Lots of great examples;

decidedly non-academic feel

but covers all the essentials

Will supplement with other

material throughout semester

10




Textbooks

CONCURRENCY
/,

éLS BIJAVA PROGRAMMING

Concurrency by Magee and
Kramer (aka “The Two Jeffs”)

Every developer needs to
understand concurrency

This book does an excellent
job covering this topic with a
software engineering
perspective

11




Textbooks

Software Abstractions
Daniel Jackson

<softwareabstractions.org/>

This book introduces a novel
way of thinking about
software abstractions anad
iIntroduces the Alloy toolset
for defining/analyzing them

Book is optional but highly

recommended!
12



http://softwareabstractions.org
http://softwareabstractions.org

Structure of Semester

» The course will switch between the first two topics
» providing an introduction to software engineering one day
» and looking at issues of concurrency the next

» We’ll switch to looking at software abstractions later in the
semester

» May also look at additional topics later in the semester
» (Additional) agile design methods, Web engineering, ...




Course Evaluation

» Your grade will be determined by your work on

» Reviews (simple questions to make sure you do the reading)

» One a week, with possible grades of “+”, “¢/”, or “-
» Homeworks (typically problems from Concurrency textbook)
» Midterm (Tuesday, March 3rd)

» Class Project (Due at last class session; student teams)

» NO FINAL!




Honor Code

» | encourage collaboration in this class via the reviews and
the class project

» I’d like, however, for the homeworks and midterm to be
worked on individually

» The Student Honor Code applies to classes in all CU
schools and colleges. You can learn about the honor code
at:

» <http://www.colorado.edu/academics/honorcode/>.



http://www.colorado.edu/academics/honorcode/
http://www.colorado.edu/academics/honorcode/

L ate Policy

» Assignments submitted late incur a 20% penalty

» Assignments can be handed in up to two weeks after the
initial due date (except for the final assignment of the class
project)

» after that you are out of luck...

» This does not apply to reviews. They are due each Saturday
by 11:55 PM

» If you don’t submit a review, it counts as a “-” (minus)




What is Software Engineering”

» The computer science discipline concerned with developing
large applications. Software engineering covers not only the
technical aspects of building software systems, but also
management issues, such as directing programming teams,

scheduling, and budgeting




What is Software Engineering”

» Software

» Computer programs and their related artifacts

» e.g. requirements documents, design documents, test cases,
Ul guidelines, usabillity tests, ...

» Engineering

» The application of scientific principles in the context of
practical constraints

» Consider: Chemist versus Chemical Engineer




What is Software Engineering”

» What is Engineering?

» Engineering is a sequence of well-defined, precisely-stated,
sound steps, which follow a method or apply a technigque
based on some combination of

» theoretical results derived from a formal model
» empirical adjustments for unmodeled phenomenon
> rules of thumb based on experience

» This definition is independent of purpose

» |.e. engineering can be applied to many disciplines




What is Software Engineering”

» Software engineering is that form of engineering that
applies...

a systematic, disciplined, quantifiable approach,

the principles of computer science, design, engineering,
management, mathematics, psychology, sociology, and other
disciplines...

» to creating, developing, operating, and maintaining cost-
effective, reliably correct, high-quality solutions to software
problems. (Daniel M. Berry)




What is Software Engineering”

» |ssues of Scale

Software engineers care about developing techniques that
enable the construction of large scale software systems

» |Issues of Communication

Consider the set of tools provided by sites like Assembla.com

» |Issues of Regulation
Other engineering disciplines require certification; should SE?
» |Issue of Design

dealing with integration of software/hardware/process



http://www.assembla.com/
http://www.assembla.com/
http://www.apple.com/macbookair/
http://www.apple.com/macbookair/

Types of Software Dev.

» Desktop Application Development

» Contract Software Development / Consulting

» Mobile Application Development

» Web Engineering (Development of Web Applications)
» Military Software Development

» Open Source Software Development

» Others??

» These categories are not orthogonal!




SE-related Jobs

» Software Developer » DBA
» Software Engineer » Sysadmin
» SQA Engineer » Software Architect
» Usability Engineer » Software Consultant
» requires strong HCI/CSCW » Web Designer
background » Build Manager /
> Systems Analyst Configuration Management
» professional regs. gatherer/ Engineer
professional designer » Others??




The Big Three

Specification

Software Engineers specify everything
code, requirements, design, process
What makes a good specification?

Translation Iteration




The Big Three

Translation

The work of software engineering is one of translation
from one specification to another
from one level of abstraction to another
from one set of structures to another
(aka decomposition)

Ilteration Specification




The Big Three

Iteration

The work of software engineering is done iteratively
step by step
task by task
sub-process by sub-process
until we are “done”

Specification Translation




The Big Three

Specification

Translation Iteration




The Big Three

Are Supported by Many Things

Principles, Techniques & Tools
Planning, Estimates & Process
PEOPLE



import random

Code written by a programmer

class atts(object):

def

def

def

def

def

def

def

def

def

def

def

__init_(self, name):
self.name = name

self.atts - Would a software engineer
_Len_(self): produce the same code?

return len(self.atts)

__contains_ (self, key):
return key in self.atts

__iter (self):

return iter(sorted(self.atts.keys())) JUSt by |OOking at it, Can We
_getiten_(self, key): see anything wrong with it?

return self.atts[key]

__setitem (self, key, value):
self.atts[key] = value

__delitem (self, key):
del self.atts[key]

;thlit_isell\;gle % self.name NO documentation?

o "
= S

for key in self.atts:

result = " s : %s" % (key, self.atts[key]) NO tGStS?

return result

sot name(self): Is this under version control?
e What sort of code coverage
return sorted(self.atts.keys()) has been achieved?

return random key(self):
position = random.randint(1l, 20)
return self.atts.keys()[position]




How to Fix?

» How would we fix the code on the previous side?
» One step at a time!
» Place under version control (or configuration management)
» Add comments
» Add tests

» Check for coverage (for python, see: <coverage.py>

» A software engineer would want at least this level of
engineering surrounding all components in their system

» Why? Is this enough?



http://nedbatchelder.com/code/modules/coverage.html
http://nedbatchelder.com/code/modules/coverage.html

St Is HARD

» No doubt about it: software engineering is hard
» Projects are late, over budget, and deliver faulty systems
» See 1995 Standish Report for one summary of the problem
» Why?

» For insight, we will take a look at an article by Fred Brooks
called No Silver Bullet

» Please read it by Thursday’s lecture

» Text is available here: No Silver Bullet



http://net.educause.edu/ir/library/pdf/NCP08083B.pdf
http://net.educause.edu/ir/library/pdf/NCP08083B.pdf
http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf
http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf

Coming Up

» Lecture 2: No Silver Bullet

» Lecture 3: C
» Lecture 4: C

napter 1 of HFSD Textbook

napter 1 of Concurrency Textbook




