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Today’s Lecture

 Examine Algebraic Specifications
 Compare Stack and Queue specifications
 Use knowledge gained to look at example in

textbook
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Algebraic Specifications

 Algebras are akin to abstract data types
 Sets of Values
 With Three Types of Operators

 Generators: Create new instance of data type
 Queries: Answer questions about the data type

 Return values are NOT instances of the data type but rather
are boolean values or values stored inside the data type

 Manipulators: return values of the data type but are
not generators, they are altering an existing instance
of the data type in some well defined way
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Terminology

 Homogeneous Algebra
 Single set and its operations

 Heterogeneous Algebra
 Multiple sets and their operations

 Signature
 Collection of sets in a heterogeneous algebra

 Sort
 A set within an algebra
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Terminology

 Syntax
 Signature plus operations with domains and

ranges (i.e. functions)
 Semantics

 Equations involving operations; axioms



February 21, 2008 © Kenneth M. Anderson, 2008 6

Algebraic Specification of
Stack

algebra StackOfItem
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Algebraic Specification of
Stack

algebra StackOfItem
     imports Boolean;
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Algebraic Specification of
Stack

algebra StackOfItem
     imports Boolean;
     introduces
          sorts Stack, Item;



February 21, 2008 © Kenneth M. Anderson, 2008 9

Algebraic Specification of
Stack

algebra StackOfItem
     imports Boolean;
     introduces
          sorts Stack, Item;
          operations
               Create: → Stack;
               IsEmpty: Stack → Boolean;
               Push: Stack × Item → Stack;
               Pop: Stack → Stack;
               Top: Stack → Item;
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algebra StackOfItem
     imports Boolean;
     introduces
          sorts Stack, Item;
          operations
               Create: → Stack;
               IsEmpty: Stack → Boolean;
               Push: Stack × Item → Stack;
               Pop: Stack → Stack;
               Top: Stack → Item;
     constrains Create, IsEmpty, Push, Pop, Top so that
          Stack generated by [Create, Push]

Algebraic Specification of
Stack
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algebra QueueOfItem

Algebraic Specification of
Queue
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algebra QueueOfItem
     imports Boolean;

Algebraic Specification of
Queue
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algebra QueueOfItem
     imports Boolean;
     introduces
          sorts Queue, Item;

Algebraic Specification of
Queue
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algebra QueueOfItem
     imports Boolean;
     introduces
          sorts Queue, Item;
          operations
               Create: → Queue;
               IsEmpty: Queue → Boolean;
               Enqueue: Queue × Item → Queue;
               Dequeue: Queue → Queue;
               Front: Queue → Item;

Algebraic Specification of
Queue
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algebra QueueOfItem
     imports Boolean;
     introduces
          sorts Queue, Item;
          operations
               Create: → Queue;
               IsEmpty: Queue → Boolean;
               Enqueue: Queue × Item → Queue;
               Dequeue: Queue → Queue;
               Front: Queue → Item;
     constrains Create, IsEmpty, Enqueue, Dequeue, Front so that
          Queue generated by [Create, Enqueue]

Algebraic Specification of
Queue
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algebra Nonsense
     imports Boolean;
     introduces
          sorts Pizza, Car;
          operations
               Cat: → Pizza;
               Horse: Pizza → Boolean;
               Dog: Pizza × Car → Pizza;
               Bird: Pizza → Pizza;
               Mouse: Pizza → Car;
     constrains Cat, Horse, Dog, Bird, Mouse so that
          Pizza generated by [Cat, Horse]

Algebraic Specification of
Pizza
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algebra StackOfItem
     imports Boolean;
     introduces
          sorts Stack, Item;
          operations
               Create: → Stack;
               IsEmpty: Stack → Boolean;
               Push: Stack × Item → Stack;
               Pop: Stack → Stack;
               Top: Stack → Item;
     constrains Create, IsEmpty, Push, Pop, Top so that
          Stack generated by [Create, Push]

Algebraic Specification of
Stack
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How Generators Work
 The generators of Stack are Create and Push

 We can think of generators as creating strings that can be
“pattern matched” by other operators

 So, the following strings all represent stacks
 Create
 Push(Create, 1)
 Push(Push(Create, 1), 2)
 Push(Push(Push(Create, 1), 2), 3)

 In general, the Push operator has the form
 Push(Stack, Item) and the result is a new Stack
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Semantic Specification of
Stack

     for all [s: Stack; i: Item]

end StackOfItem;
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Semantic Specification of
Stack

     for all [s: Stack; i: Item]
          IsEmpty(Create) = true;

end StackOfItem;
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Semantic Specification of
Stack

     for all [s: Stack; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Push(s,i)) = false;

end StackOfItem;

These first two rules say:
if you pass Create to IsEmpty
we return true, otherwise
we return false
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Semantic Specification of
Stack

     for all [s: Stack; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Push(s,i)) = false;
          Pop(Create) = error;

end StackOfItem;
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Semantic Specification of
Stack

     for all [s: Stack; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Push(s,i)) = false;
          Pop(Create) = error;
          Top(Create) = error;

end StackOfItem;

These next two rules say:
It is an error to pass Create
to the Pop and Top operations
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Semantic Specification of
Stack

     for all [s: Stack; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Push(s,i)) = false;
          Pop(Create) = error;
          Top(Create) = error;
          Pop(Push(s,i)) = s;         

end StackOfItem;
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Semantic Specification of
Stack

     for all [s: Stack; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Push(s,i)) = false;
          Pop(Create) = error;
          Top(Create) = error;
          Pop(Push(s,i)) = s;         
          Top(Push(s,i)) = i;
end StackOfItem;

These last two rules say:
If you Pop a stack, you get its
internal stack. If you apply Top
to a stack, you get its item.
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How do Pop and Top work?
 Pop(Push(Push(Push(Create, 1), 2), 3))
 The rule says

 Pop(Push(s,i)) = s;
 So, we apply the pattern match and the part in bold

above matches “s” and so we return
 Push(Push(Create, 1), 2)

 And have essentially popped the original stack

 Top(Push(Push(Push(Create, 1), 2), 3))
 This expression evaluates to “3”
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algebra QueueOfItem
     imports Boolean;
     introduces
          sorts Queue, Item;
          operations
               Create: → Queue;
               IsEmpty: Queue → Boolean;
               Enqueue: Queue × Item → Queue;
               Dequeue: Queue → Queue;
               Front: Queue → Item;
     constrains Create, IsEmpty, Enqueue, Dequeue, Front so that
          Queue generated by [Create, Enqueue]

Algebraic Specification of
Queue
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     for all [q: Queue; i: Item]

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;
          Front(Create) = error;

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;
          Front(Create) = error;
          Dequeue(Enqueue(q,i))

end QueueOfItem;

Semantic Specification of
Queue



February 21, 2008 © Kenneth M. Anderson, 2008 34

     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;
          Front(Create) = error;
          Dequeue(Enqueue(q,i)) = if (IsEmpty(q))

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;
          Front(Create) = error;
          Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                                         then Create

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;
          Front(Create) = error;
          Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                                         then Create
                                                         else Enqueue(Dequeue(q),i);

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;
          Front(Create) = error;
          Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                                         then Create
                                                         else Enqueue(Dequeue(q),i);
          Front(Enqueue(q,i))

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;
          Front(Create) = error;
          Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                                         then Create
                                                         else Enqueue(Dequeue(q),i);
          Front(Enqueue(q,i)) = if (IsEmpty(q))

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;
          Front(Create) = error;
          Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                                         then Create
                                                         else Enqueue(Dequeue(q),i);
          Front(Enqueue(q,i)) = if (IsEmpty(q))
                                                   then i

end QueueOfItem;

Semantic Specification of
Queue
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     for all [q: Queue; i: Item]
          IsEmpty(Create) = true;
          IsEmpty(Enqueue(q,i)) = false;
          Dequeue(Create) = error;
          Front(Create) = error;
          Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                                         then Create
                                                         else Enqueue(Dequeue(q),i);
          Front(Enqueue(q,i)) = if (IsEmpty(q))
                                                   then i
                                                   else Front(q);
end QueueOfItem;

Semantic Specification of
Queue
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First: Queue Generators
 Create and Enqueue(q, i) are generators
 The following are valid queues

 Create
 Enqueue(Create, 1)
 Enqueue(Enqueue(Create, 1), 2)
 Enqueue(Enqueue(Enqueue(Create, 1), 2), 3)

 IsEmpty operator is easy to understand
 Create is Empty, anything else is not
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Second: What about Front?
 Rule: Front(Enqueue(q,i)) = if (IsEmpty(q))
                                                   then i
                                                   else Front(q);

 Front(Enqueue(Enqueue(Create, 1), 2))
 q is highlighted in bold; its not empty, so
 Front(Enqueue(Create, 1))
 q is again highlighted in bold; it IS empty, so
 1

 And that indeed is the front of the original
queue
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Third: What about Dequeue?

 Rule: Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                                         then Create
                                                         else Enqueue(Dequeue(q),i)

 Dequeue(Enqueue(Enqueue(Create, 1), 2))
 Enqueue(Dequeue(Enqueue(Create, 1)), 2)
 Enqueue(Create, 2)

 We are left with a queue in which the
first element was indeed removed
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Textbook Example: Library
 Important to realize that example in book is

incomplete
 Operators are:

 New, buy, lose, borrow, return, reserve, unreserve, recall,
isInCatalogue, isOnLoan, isOnReserve

 Generators: New, buy, borrow, reserve
 Queries: isInCatalogue, isOnLoan, isOnReserve
 Manipulators: lose, return, unreserve, recall
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Example Libraries

 New
 buy(New, a)
 buy(buy(New, a), b)
 borrow(buy(buy(New, a), b), b)
 reserve(borrow(buy(buy(New, a), b), b), a)

 Last library has two books “a” and “b”
 a is on reserve, b has been borrowed
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Example: IsInCatalogue (I)
 Rules

 isInCatalogue(New, i) ≡  ERROR
 isInCatalogue(buy(lib, i), i2) ≡

 if i = i2 then true else isInCatalogue(lib, i2)
 isInCatalogue(borrow(lib, i), i2) ≡

 isInCatalogue(lib, i2)
 isInCatalogue(reserve(lib, i), i2) ≡

 isInCatalogue(lib, i2)

 We must supply definitions for each non-generator
being applied to instances of each generator
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Example: IsInCatalogue (II)
 IsInCatalogue(borrow(buy(buy(New, a), b), b), a)
 IsInCatalogue(buy(buy(New, a), b), a)
 IsInCatalogue(buy(New, a), a)
 True
 IsInCatalogue(borrow(buy(buy(New, a), b), b), c)
 IsInCatalogue(buy(buy(New, a), b), c)
 IsInCatalogue(buy(New, a), c)
 IsInCatalogue(New, c)
 False
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Example: Lose (I)

 Rules
 lose(New, i) ≡  ERROR
 lose(buy(lib, i), i2) ≡

 if i = i2 then lib else buy(lose(lib, i2), i)
 lose(borrow(lib, i), i2) ≡

 if i = i2 then lose(lib, i2) else borrow(lose(lib, i2), i)
 lose(reserve(lib, i), i2) ≡

 if i = i2 then lose(lib, i2) else reserve(lose(lib, i2), i)
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Example: Lose (II)
 lose(reserve(borrow(buy(buy(New, a), b), b), a), a)
 lose(borrow(buy(buy(New, a), b), b), a)
 borrow(lose(buy(buy(New, a), b), a), b)
 borrow(buy(lose(buy(New, a), a), b), b)
 borrow(buy(New, b), b)

 In moving to the last step, the entire phrase
 lose(buy(New, a), a)

 was simply replaced with
 New
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Summary
 Algebraic specifications model the behavior of a

system via operations on structured strings that
capture the system’s state
 Other notations can “tempt” developers into specifying the

implementation of a system early
 That is, other notations tend to suggest particular

implementations
 UML class model ⇒ Classes in OO language
 Data Flow Diagrams ⇒ Data Processing Modules
 Z specification ⇒ sets, sequences, and functions

 Algebraic specs can reduce this temptation since
their suggested implementation is so inefficient!


