
Algebraic Specifications
Supplement

Kenneth M. Anderson
Foundations of Software Engineering

CSCI 5828 — Spring 2008

February 21, 2008 © Kenneth M. Anderson, 2008 2

Today’s Lecture

 Examine Algebraic Specifications
 Compare Stack and Queue specifications
 Use knowledge gained to look at example in

textbook

February 21, 2008 © Kenneth M. Anderson, 2008 3

Algebraic Specifications

 Algebras are akin to abstract data types
 Sets of Values
 With Three Types of Operators

 Generators: Create new instance of data type
 Queries: Answer questions about the data type

 Return values are NOT instances of the data type but rather
are boolean values or values stored inside the data type

 Manipulators: return values of the data type but are
not generators, they are altering an existing instance
of the data type in some well defined way

February 21, 2008 © Kenneth M. Anderson, 2008 4

Terminology

 Homogeneous Algebra
 Single set and its operations

 Heterogeneous Algebra
 Multiple sets and their operations

 Signature
 Collection of sets in a heterogeneous algebra

 Sort
 A set within an algebra

February 21, 2008 © Kenneth M. Anderson, 2008 5

Terminology

 Syntax
 Signature plus operations with domains and

ranges (i.e. functions)
 Semantics

 Equations involving operations; axioms

February 21, 2008 © Kenneth M. Anderson, 2008 6

Algebraic Specification of
Stack

algebra StackOfItem

February 21, 2008 © Kenneth M. Anderson, 2008 7

Algebraic Specification of
Stack

algebra StackOfItem
 imports Boolean;

February 21, 2008 © Kenneth M. Anderson, 2008 8

Algebraic Specification of
Stack

algebra StackOfItem
 imports Boolean;
 introduces
 sorts Stack, Item;

February 21, 2008 © Kenneth M. Anderson, 2008 9

Algebraic Specification of
Stack

algebra StackOfItem
 imports Boolean;
 introduces
 sorts Stack, Item;
 operations
 Create: → Stack;
 IsEmpty: Stack → Boolean;
 Push: Stack × Item → Stack;
 Pop: Stack → Stack;
 Top: Stack → Item;

February 21, 2008 © Kenneth M. Anderson, 2008 10

algebra StackOfItem
 imports Boolean;
 introduces
 sorts Stack, Item;
 operations
 Create: → Stack;
 IsEmpty: Stack → Boolean;
 Push: Stack × Item → Stack;
 Pop: Stack → Stack;
 Top: Stack → Item;
 constrains Create, IsEmpty, Push, Pop, Top so that
 Stack generated by [Create, Push]

Algebraic Specification of
Stack

February 21, 2008 © Kenneth M. Anderson, 2008 11

algebra QueueOfItem

Algebraic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 12

algebra QueueOfItem
 imports Boolean;

Algebraic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 13

algebra QueueOfItem
 imports Boolean;
 introduces
 sorts Queue, Item;

Algebraic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 14

algebra QueueOfItem
 imports Boolean;
 introduces
 sorts Queue, Item;
 operations
 Create: → Queue;
 IsEmpty: Queue → Boolean;
 Enqueue: Queue × Item → Queue;
 Dequeue: Queue → Queue;
 Front: Queue → Item;

Algebraic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 15

algebra QueueOfItem
 imports Boolean;
 introduces
 sorts Queue, Item;
 operations
 Create: → Queue;
 IsEmpty: Queue → Boolean;
 Enqueue: Queue × Item → Queue;
 Dequeue: Queue → Queue;
 Front: Queue → Item;
 constrains Create, IsEmpty, Enqueue, Dequeue, Front so that
 Queue generated by [Create, Enqueue]

Algebraic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 16

algebra Nonsense
 imports Boolean;
 introduces
 sorts Pizza, Car;
 operations
 Cat: → Pizza;
 Horse: Pizza → Boolean;
 Dog: Pizza × Car → Pizza;
 Bird: Pizza → Pizza;
 Mouse: Pizza → Car;
 constrains Cat, Horse, Dog, Bird, Mouse so that
 Pizza generated by [Cat, Horse]

Algebraic Specification of
Pizza

February 21, 2008 © Kenneth M. Anderson, 2008 17

algebra StackOfItem
 imports Boolean;
 introduces
 sorts Stack, Item;
 operations
 Create: → Stack;
 IsEmpty: Stack → Boolean;
 Push: Stack × Item → Stack;
 Pop: Stack → Stack;
 Top: Stack → Item;
 constrains Create, IsEmpty, Push, Pop, Top so that
 Stack generated by [Create, Push]

Algebraic Specification of
Stack

February 21, 2008 © Kenneth M. Anderson, 2008 18

How Generators Work
 The generators of Stack are Create and Push

 We can think of generators as creating strings that can be
“pattern matched” by other operators

 So, the following strings all represent stacks
 Create
 Push(Create, 1)
 Push(Push(Create, 1), 2)
 Push(Push(Push(Create, 1), 2), 3)

 In general, the Push operator has the form
 Push(Stack, Item) and the result is a new Stack

February 21, 2008 © Kenneth M. Anderson, 2008 19

Semantic Specification of
Stack

 for all [s: Stack; i: Item]

end StackOfItem;

February 21, 2008 © Kenneth M. Anderson, 2008 20

Semantic Specification of
Stack

 for all [s: Stack; i: Item]
 IsEmpty(Create) = true;

end StackOfItem;

February 21, 2008 © Kenneth M. Anderson, 2008 21

Semantic Specification of
Stack

 for all [s: Stack; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Push(s,i)) = false;

end StackOfItem;

These first two rules say:
if you pass Create to IsEmpty
we return true, otherwise
we return false

February 21, 2008 © Kenneth M. Anderson, 2008 22

Semantic Specification of
Stack

 for all [s: Stack; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Push(s,i)) = false;
 Pop(Create) = error;

end StackOfItem;

February 21, 2008 © Kenneth M. Anderson, 2008 23

Semantic Specification of
Stack

 for all [s: Stack; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Push(s,i)) = false;
 Pop(Create) = error;
 Top(Create) = error;

end StackOfItem;

These next two rules say:
It is an error to pass Create
to the Pop and Top operations

February 21, 2008 © Kenneth M. Anderson, 2008 24

Semantic Specification of
Stack

 for all [s: Stack; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Push(s,i)) = false;
 Pop(Create) = error;
 Top(Create) = error;
 Pop(Push(s,i)) = s;

end StackOfItem;

February 21, 2008 © Kenneth M. Anderson, 2008 25

Semantic Specification of
Stack

 for all [s: Stack; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Push(s,i)) = false;
 Pop(Create) = error;
 Top(Create) = error;
 Pop(Push(s,i)) = s;
 Top(Push(s,i)) = i;
end StackOfItem;

These last two rules say:
If you Pop a stack, you get its
internal stack. If you apply Top
to a stack, you get its item.

February 21, 2008 © Kenneth M. Anderson, 2008 26

How do Pop and Top work?
 Pop(Push(Push(Push(Create, 1), 2), 3))
 The rule says

 Pop(Push(s,i)) = s;
 So, we apply the pattern match and the part in bold

above matches “s” and so we return
 Push(Push(Create, 1), 2)

 And have essentially popped the original stack

 Top(Push(Push(Push(Create, 1), 2), 3))
 This expression evaluates to “3”

February 21, 2008 © Kenneth M. Anderson, 2008 27

algebra QueueOfItem
 imports Boolean;
 introduces
 sorts Queue, Item;
 operations
 Create: → Queue;
 IsEmpty: Queue → Boolean;
 Enqueue: Queue × Item → Queue;
 Dequeue: Queue → Queue;
 Front: Queue → Item;
 constrains Create, IsEmpty, Enqueue, Dequeue, Front so that
 Queue generated by [Create, Enqueue]

Algebraic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 28

 for all [q: Queue; i: Item]

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 29

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 30

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 31

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 32

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;
 Front(Create) = error;

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 33

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;
 Front(Create) = error;
 Dequeue(Enqueue(q,i))

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 34

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;
 Front(Create) = error;
 Dequeue(Enqueue(q,i)) = if (IsEmpty(q))

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 35

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;
 Front(Create) = error;
 Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
 then Create

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 36

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;
 Front(Create) = error;
 Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
 then Create
 else Enqueue(Dequeue(q),i);

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 37

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;
 Front(Create) = error;
 Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
 then Create
 else Enqueue(Dequeue(q),i);
 Front(Enqueue(q,i))

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 38

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;
 Front(Create) = error;
 Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
 then Create
 else Enqueue(Dequeue(q),i);
 Front(Enqueue(q,i)) = if (IsEmpty(q))

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 39

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;
 Front(Create) = error;
 Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
 then Create
 else Enqueue(Dequeue(q),i);
 Front(Enqueue(q,i)) = if (IsEmpty(q))
 then i

end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 40

 for all [q: Queue; i: Item]
 IsEmpty(Create) = true;
 IsEmpty(Enqueue(q,i)) = false;
 Dequeue(Create) = error;
 Front(Create) = error;
 Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
 then Create
 else Enqueue(Dequeue(q),i);
 Front(Enqueue(q,i)) = if (IsEmpty(q))
 then i
 else Front(q);
end QueueOfItem;

Semantic Specification of
Queue

February 21, 2008 © Kenneth M. Anderson, 2008 41

First: Queue Generators
 Create and Enqueue(q, i) are generators
 The following are valid queues

 Create
 Enqueue(Create, 1)
 Enqueue(Enqueue(Create, 1), 2)
 Enqueue(Enqueue(Enqueue(Create, 1), 2), 3)

 IsEmpty operator is easy to understand
 Create is Empty, anything else is not

February 21, 2008 © Kenneth M. Anderson, 2008 42

Second: What about Front?
 Rule: Front(Enqueue(q,i)) = if (IsEmpty(q))
 then i
 else Front(q);

 Front(Enqueue(Enqueue(Create, 1), 2))
 q is highlighted in bold; its not empty, so
 Front(Enqueue(Create, 1))
 q is again highlighted in bold; it IS empty, so
 1

 And that indeed is the front of the original
queue

February 21, 2008 © Kenneth M. Anderson, 2008 43

Third: What about Dequeue?

 Rule: Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
 then Create
 else Enqueue(Dequeue(q),i)

 Dequeue(Enqueue(Enqueue(Create, 1), 2))
 Enqueue(Dequeue(Enqueue(Create, 1)), 2)
 Enqueue(Create, 2)

 We are left with a queue in which the
first element was indeed removed

February 21, 2008 © Kenneth M. Anderson, 2008 44

Textbook Example: Library
 Important to realize that example in book is

incomplete
 Operators are:

 New, buy, lose, borrow, return, reserve, unreserve, recall,
isInCatalogue, isOnLoan, isOnReserve

 Generators: New, buy, borrow, reserve
 Queries: isInCatalogue, isOnLoan, isOnReserve
 Manipulators: lose, return, unreserve, recall

February 21, 2008 © Kenneth M. Anderson, 2008 45

Example Libraries

 New
 buy(New, a)
 buy(buy(New, a), b)
 borrow(buy(buy(New, a), b), b)
 reserve(borrow(buy(buy(New, a), b), b), a)

 Last library has two books “a” and “b”
 a is on reserve, b has been borrowed

February 21, 2008 © Kenneth M. Anderson, 2008 46

Example: IsInCatalogue (I)
 Rules

 isInCatalogue(New, i) ≡ ERROR
 isInCatalogue(buy(lib, i), i2) ≡

 if i = i2 then true else isInCatalogue(lib, i2)
 isInCatalogue(borrow(lib, i), i2) ≡

 isInCatalogue(lib, i2)
 isInCatalogue(reserve(lib, i), i2) ≡

 isInCatalogue(lib, i2)

 We must supply definitions for each non-generator
being applied to instances of each generator

February 21, 2008 © Kenneth M. Anderson, 2008 47

Example: IsInCatalogue (II)
 IsInCatalogue(borrow(buy(buy(New, a), b), b), a)
 IsInCatalogue(buy(buy(New, a), b), a)
 IsInCatalogue(buy(New, a), a)
 True
 IsInCatalogue(borrow(buy(buy(New, a), b), b), c)
 IsInCatalogue(buy(buy(New, a), b), c)
 IsInCatalogue(buy(New, a), c)
 IsInCatalogue(New, c)
 False

February 21, 2008 © Kenneth M. Anderson, 2008 48

Example: Lose (I)

 Rules
 lose(New, i) ≡ ERROR
 lose(buy(lib, i), i2) ≡

 if i = i2 then lib else buy(lose(lib, i2), i)
 lose(borrow(lib, i), i2) ≡

 if i = i2 then lose(lib, i2) else borrow(lose(lib, i2), i)
 lose(reserve(lib, i), i2) ≡

 if i = i2 then lose(lib, i2) else reserve(lose(lib, i2), i)

February 21, 2008 © Kenneth M. Anderson, 2008 49

Example: Lose (II)
 lose(reserve(borrow(buy(buy(New, a), b), b), a), a)
 lose(borrow(buy(buy(New, a), b), b), a)
 borrow(lose(buy(buy(New, a), b), a), b)
 borrow(buy(lose(buy(New, a), a), b), b)
 borrow(buy(New, b), b)

 In moving to the last step, the entire phrase
 lose(buy(New, a), a)

 was simply replaced with
 New

February 21, 2008 © Kenneth M. Anderson, 2008 50

Summary
 Algebraic specifications model the behavior of a

system via operations on structured strings that
capture the system’s state
 Other notations can “tempt” developers into specifying the

implementation of a system early
 That is, other notations tend to suggest particular

implementations
 UML class model ⇒ Classes in OO language
 Data Flow Diagrams ⇒ Data Processing Modules
 Z specification ⇒ sets, sequences, and functions

 Algebraic specs can reduce this temptation since
their suggested implementation is so inefficient!

