Algebraic Specifications Supplement

Kenneth M. Anderson
Foundations of Software Engineering CSCI 5828 — Spring 2008

Today's Lecture

- Examine Algebraic Specifications
- Compare Stack and Queue specifications
- Use knowledge gained to look at example in textbook

Algebraic Specifications

- Algebras are akin to abstract data types
- Sets of Values
- With Three Types of Operators
- Generators: Create new instance of data type
- Queries: Answer questions about the data type
- Return values are NOT instances of the data type but rather are boolean values or values stored inside the data type
- Manipulators: return values of the data type but are not generators, they are altering an existing instance of the data type in some well defined way

Terminology

- Homogeneous Algebra

Single set and its operations

- Heterogeneous Algebra

Multiple sets and their operations

- Signature

Collection of sets in a heterogeneous algebra

- Sort

A set within an algebra

Terminology

- Syntax

Signature plus operations with domains and ranges (i.e. functions)

- Semantics

Equations involving operations; axioms

Algebraic Specification of Stack

algebra StackOfltem

Algebraic Specification of Stack

algebra StackOfltem
imports Boolean;

Algebraic Specification of Stack

algebra StackOfltem
imports Boolean;
introduces
sorts Stack, Item;

Algebraic Specification of Stack

algebra StackOfltem
imports Boolean;
introduces
sorts Stack, Item; operations

Create: \rightarrow Stack;
IsEmpty: Stack \rightarrow Boolean;
Push: Stack \times Item \rightarrow Stack;
Pop: Stack \rightarrow Stack;
Top: Stack \rightarrow Item;

Algebraic Specification of Stack

algebra StackOfltem
imports Boolean;
introduces
sorts Stack, Item; operations
Create: \rightarrow Stack;
IsEmpty: Stack \rightarrow Boolean;
Push: Stack \times Item \rightarrow Stack;
Pop: Stack \rightarrow Stack;
Top: Stack \rightarrow Item;
constrains Create, IsEmpty, Push, Pop, Top so that Stack generated by [Create, Push]

Algebraic Specification of Queue

algebra QueueOfltem

Algebraic Specification of Queue

algebra QueueOfltem
imports Boolean;

Algebraic Specification of Queue

algebra QueueOfltem
imports Boolean;
introduces
sorts Queue, Item;

Algebraic Specification of Queue

algebra QueueOfltem
imports Boolean;
introduces
sorts Queue, Item;
operations
Create: \rightarrow Queue;
IsEmpty: Queue \rightarrow Boolean;
Enqueue: Queue \times Item \rightarrow Queue;
Dequeue: Queue \rightarrow Queue;
Front: Queue \rightarrow Item;

Algebraic Specification of Queue

```
algebra QueueOfltem
    imports Boolean;
    introduces
        sorts Queue, Item;
        operations
        Create: }->\mathrm{ Queue;
        IsEmpty: Queue }->\mathrm{ Boolean;
        Enqueue: Queue x Item }->\mathrm{ Queue;
        Dequeue: Queue }->\mathrm{ Queue;
    Front: Queue }->\mathrm{ Item;
    constrains Create, IsEmpty, Enqueue, Dequeue, Front so that
    Queue generated by [Create, Enqueue]
```


Algebraic Specification of Pizza

```
algebra Nonsense
    imports Boolean;
    introduces
        sorts Pizza, Car;
        operations
        Cat: -> Pizza;
        Horse: Pizza }->\mathrm{ Boolean;
        Dog: Pizza x Car }->\mathrm{ Pizza;
        Bird: Pizza }->\mathrm{ Pizza;
        Mouse: Pizza -> Car;
    constrains Cat, Horse, Dog, Bird, Mouse so that
    Pizza generated by [Cat, Horse]
```


Algebraic Specification of Stack

algebra StackOfltem
imports Boolean;
introduces
sorts Stack, Item; operations
Create: \rightarrow Stack;
IsEmpty: Stack \rightarrow Boolean;
Push: Stack \times Item \rightarrow Stack;
Pop: Stack \rightarrow Stack;
Top: Stack \rightarrow Item;
constrains Create, IsEmpty, Push, Pop, Top so that Stack generated by [Create, Push]

How Generators Work

- The generators of Stack are Create and Push
- We can think of generators as creating strings that can be "pattern matched" by other operators
- So, the following strings all represent stacks
- Create
- Push(Create, 1)
- Push(Push(Create, 1), 2)
- Push(Push(Push(Create, 1), 2), 3)
- In general, the Push operator has the form
- Push(Stack, Item) and the result is a new Stack

Semantic Specification of Stack

for all [s: Stack; i: Item]
end StackOfltem;

Semantic Specification of Stack

for all [s: Stack; i: Item] IsEmpty(Create) = true;
end StackOfltem;

Semantic Specification of Stack

for all [s: Stack; i: Item] IsEmpty(Create) = true; IsEmpty(Push(s,i)) = false;

> These first two rules say:
> if you pass Create to IsEmpty we return true, otherwise we return false
end StackOfltem;

Semantic Specification of Stack

for all [s: Stack; i: Item]
IsEmpty(Create) = true; IsEmpty(Push(s,i)) = false; Pop(Create) = error;

end StackOfltem;

Semantic Specification of Stack

for all [s: Stack; i: Item]
IsEmpty(Create) = true; IsEmpty(Push(s,i)) = false; Pop(Create) = error; Top(Create) = error;

These next two rules say:
It is an error to pass Create to the Pop and Top operations
end StackOfltem;

Semantic Specification of Stack

for all [s: Stack; i: Item]
IsEmpty(Create) = true;
IsEmpty(Push(s,i)) = false;
Pop(Create) = error;
Top(Create) = error;
$\operatorname{Pop}($ Push(s,i)) = s;

end StackOfltem;

Semantic Specification of Stack

for all [s: Stack; i: Item]
IsEmpty(Create) = true; IsEmpty(Push(s,i)) = false;
Pop(Create) = error;
Top(Create) = error;
$\operatorname{Pop}(\operatorname{Push}(\mathrm{s}, \mathrm{i}))=\mathrm{s} ;$
$\operatorname{Top}($ Push(s, i)) $=\mathrm{i}$;
end StackOfltem;

These last two rules say:
If you Pop a stack, you get its internal stack. If you apply Top to a stack, you get its item.

How do Pop and Top work?

- Pop(Push(Push(Push(Create, 1), 2), 3))
- The rule says
- Pop(Push(s,i)) = s;
- So, we apply the pattern match and the part in bold above matches " s " and so we return
- Push(Push(Create, 1), 2)
- And have essentially popped the original stack
- Top(Push(Push(Push(Create, 1), 2), 3))
- This expression evaluates to " 3 "

Algebraic Specification of Queue

```
algebra QueueOfltem
    imports Boolean;
    introduces
        sorts Queue, Item;
        operations
            Create: }->\mathrm{ Queue;
            IsEmpty: Queue }->\mathrm{ Boolean;
            Enqueue:Queue x Item }->\mathrm{ Queue;
            Dequeue: Queue }->\mathrm{ Queue;
            Front: Queue -> Item;
    constrains Create, IsEmpty, Enqueue, Dequeue, Front so that
    Queue generated by [Create, Enqueue]
```


Semantic Specification of Queue

for all [q: Queue; i: Item]
end QueueOfltem;

Semantic Specification of Queue

for all [q: Queue; i: Item]
IsEmpty(Create) = true;
end QueueOfltem;

Semantic Specification of Queue

for all [q: Queue; i: Item]
IsEmpty(Create) = true;
IsEmpty(Enqueue(q,i)) = false;

end QueueOfltem;

Semantic Specification of Queue

for all [q: Queue; i: Item]
IsEmpty(Create) = true;
IsEmpty(Enqueue(q,i)) = false;
Dequeue(Create) = error;

end QueueOfltem;

Semantic Specification of Queue

for all [q: Queue; i: Item]
IsEmpty(Create) = true;
IsEmpty(Enqueue(q,i)) = false;
Dequeue(Create) = error;
Front(Create) = error;

end QueueOfltem;

Semantic Specification of Queue

for all [q: Queue; i: Item]
IsEmpty(Create) = true;
IsEmpty(Enqueue(q,i)) = false;
Dequeue(Create) = error;
Front(Create) = error;
Dequeue(Enqueue(q,i))

end QueueOfltem;

Semantic Specification of Queue

```
for all [q: Queue; i: Item]
    IsEmpty(Create) = true;
    IsEmpty(Enqueue(q,i)) = false;
    Dequeue(Create) = error;
    Front(Create) = error;
    Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
```

end QueueOfltem;

Semantic Specification of Queue

for all [q: Queue; i: Item]
IsEmpty(Create) = true;
IsEmpty(Enqueue(q,i)) = false;
Dequeue(Create) = error;
Front(Create) = error;
Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
then Create

end QueueOfltem;

Semantic Specification of Queue

```
for all [q: Queue; i: Item]
    IsEmpty(Create) = true;
    IsEmpty(Enqueue(q,i)) = false;
    Dequeue(Create) = error;
    Front(Create) = error;
    Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                    then Create
                                    else Enqueue(Dequeue(q),i);
```

end QueueOfltem;

Semantic Specification of Queue

```
for all [q: Queue; i: Item]
    IsEmpty(Create) = true;
    IsEmpty(Enqueue(q,i)) = false;
    Dequeue(Create) = error;
    Front(Create) = error;
    Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                then Create
                                else Enqueue(Dequeue(q),i);
    Front(Enqueue(q,i))
```

end QueueOfltem;

Semantic Specification of Queue

for all [q: Queue; i: Item]
IsEmpty(Create) = true;
IsEmpty(Enqueue(q,i)) = false;
Dequeue(Create) = error;
Front(Create) = error;
Dequeue(Enqueue(q,i)) = if (IsEmpty(q)) then Create
else Enqueue(Dequeue(q),i);
Front(Enqueue(q,i)) = if (IsEmpty(q))
end QueueOfltem;

Semantic Specification of Queue

```
for all [q: Queue; i: ltem]
    IsEmpty(Create) = true;
    IsEmpty(Enqueue(q,i)) = false;
    Dequeue(Create) = error;
    Front(Create) = error;
    Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
                                    then Create
                                    else Enqueue(Dequeue(q),i);
Front(Enqueue(q,i)) = if (IsEmpty(q))
                        then i
```

end QueueOfltem;

Semantic Specification of Queue

for all [q: Queue; i: Item]
IsEmpty(Create) = true;
IsEmpty(Enqueue(q,i)) = false;
Dequeue(Create) = error;
Front(Create) = error;
Dequeue(Enqueue(q,i)) = if (IsEmpty(q)) then Create
else Enqueue(Dequeue(q),i);
Front(Enqueue(q,i)) = if (IsEmpty(q)) then i else Front(q);
end QueueOfltem;

First: Queue Generators

- Create and Enqueue(q, i) are generators
- The following are valid queues
- Create
- Enqueue(Create, 1)
- Enqueue(Enqueue(Create, 1), 2)
- Enqueue(Enqueue(Enqueue(Create, 1), 2), 3)
- IsEmpty operator is easy to understand
- Create is Empty, anything else is not

Second: What about Front?

- Rule: $\operatorname{Front(Enqueue(q,i))~}$ if (IsEmpty(q)) then i
else Front(q);
- Front(Enqueue(Enqueue(Create, 1), 2))
- q is highlighted in bold; its not empty, so
- Front(Enqueue(Create, 1))
- q is again highlighted in bold; it IS empty, so
- 1
- And that indeed is the front of the original queue

Third: What about Dequeue?

- Rule: Dequeue(Enqueue(q,i)) = if (IsEmpty(q)) then Create else Enqueue(Dequeue(q),i)
- Dequeue(Enqueue(Enqueue(Create, 1), 2))
- Enqueue(Dequeue(Enqueue(Create, 1)), 2)
- Enqueue(Create, 2)
- We are left with a queue in which the first element was indeed removed

Textbook Example: Library

- Important to realize that example in book is incomplete
- Operators are:
- New, buy, lose, borrow, return, reserve, unreserve, recall, isInCatalogue, isOnLoan, isOnReserve
- Generators: New, buy, borrow, reserve
- Queries: isInCatalogue, isOnLoan, isOnReserve
- Manipulators: lose, return, unreserve, recall

Example Libraries

- New
- buy(New, a)
- buy(buy(New, a), b)
- borrow(buy(buy(New, a), b), b)
- reserve(borrow(buy(buy(New, a), b), b), a)
- Last library has two books "a" and "b"
- a is on reserve, b has been borrowed

Example: IsInCatalogue (I)

- Rules
- isInCatalogue(New, i) \equiv ERROR
- isInCatalogue(buy(lib, i), i2) 三
- if $\mathrm{i}=\mathrm{i} 2$ then true else isInCatalogue(lib, i 2$)$
- isInCatalogue(borrow(lib, i), i2) ミ
- isInCatalogue(lib, i2)
- isInCatalogue(reserve(lib, i), i2) \equiv
- isInCatalogue(lib, i2)
- We must supply definitions for each non-generator being applied to instances of each generator

Example: IsInCatalogue (II)

- IsInCatalogue(borrow(buy(buy(New, a), b), b), a)
- IsInCatalogue(buy(buy(New, a), b), a)
- IsInCatalogue(buy(New, a), a)
- True
- IsInCatalogue(borrow(buy(buy(New, a), b), b), c)
- IsInCatalogue(buy(buy(New, a), b), c)
- IsInCatalogue(buy(New, a), c)
- IsInCatalogue(New, c)
- False

Example: Lose (I)

- Rules
- lose(New, i) \equiv ERROR
- lose(buy(lib, i), i2) 三
- if $\mathrm{i}=\mathrm{i} 2$ then lib else buy(lose(lib, i2), i)
- lose(borrow(lib, i), i2) \equiv
- if $\mathrm{i}=\mathrm{i} 2$ then lose(lib, i2) else borrow(lose(lib, i2), i)
- lose(reserve(lib, i), i2) \equiv
- if $\mathrm{i}=\mathrm{i} 2$ then lose(lib, i2) else reserve(lose(lib, i2), i)

Example: Lose (II)

- lose(reserve(borrow(buy(buy(New, a), b), b), a), a)
- lose(borrow(buy(buy(New, a), b), b), a)
- borrow(lose(buy(buy(New, a), b), a), b)
- borrow(buy(lose(buy(New, a), a), b), b)
- borrow(buy(New, b), b)
- In moving to the last step, the entire phrase
- lose(buy(New, a), a)
- was simply replaced with
- New

Summary

- Algebraic specifications model the behavior of a system via operations on structured strings that capture the system's state
- Other notations can "tempt" developers into specifying the implementation of a system early
- That is, other notations tend to suggest particular implementations
- UML class model \Rightarrow Classes in OO language
- Data Flow Diagrams \Rightarrow Data Processing Modules
- Z specification \Rightarrow sets, sequences, and functions
- Algebraic specs can reduce this temptation since their suggested implementation is so inefficient!

