
CSCI 5828: Foundations of
Software Engineering

Lecture 24 and 25: Testing Programs
Slides created by Pfleeger and Atlee for the SE textbook

Some modifications to the original slides have been made by Ken
Anderson for clarity of presentation

04/10/2008 — 04/15/2008

ISBN 0-13-146913-4
Prentice-Hall, 2006

Chapter 8

Testing the
Programs

Copyright 2006 Pearson/Prentice Hall. All rights reserved.

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.3
© 2006 Pearson/Prentice Hall

8.1 Software Faults and Failures
Why Does Software Fail?

• Wrong requirement: not what the customer wants
– Note: what customer’s want changes/evolves over time

• Missing requirement
• Requirement impossible to implement
• Faulty design
• Faulty code
• Improperly implemented design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.4
© 2006 Pearson/Prentice Hall

8.1 Software Faults and Failures
Objective of Testing

• Objective of testing: discover faults
– Recall: “error, fault, failure” framework
– We are trying to find faults by causing failures to occur
– We then trace back from the failure to find the fault

• A test is successful only when a fault is
discovered
– Fault identification is the process of determining what

fault caused a failure
– Fault correction is the process of making changes to

the system so that the faults are removed

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.5
© 2006 Pearson/Prentice Hall

8.1 Software Faults and Failures
Types of Faults

• Algorithmic fault
• Computation and precision fault

– a formula’s implementation is wrong
• Documentation fault

– Documentation doesn’t match what program does
• Capacity or boundary faults

– System’s performance not acceptable when certain limits are
reached

• Timing or coordination faults
• Performance faults

– System does not perform at the speed prescribed
• Standard and procedure faults

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.6
© 2006 Pearson/Prentice Hall

Documentation Fault

• If you find a documentation fault
– “program behavior does not match documentation”

• which do you change?
– The program?
– The documentation?

• What do you think typically happens?
• What should happen?

– How do you determine what the correct behavior is?

© 2008 University of Colorado

Program Verification
 Program Verification is the process of

demonstrating that a particular
program meets its specification
 If a program meets its specification it is

considered “correct”

© 2008 University of Colorado

Program Correctness
 To repeat: a program is correct only

when it meets (i.e. implements) its
specification

 Is the program useful? Not necessarily
 In order to be useful, the spec. has to

match the needs of the system’s users
 What happens if the spec. contains an

error?
 If the program matches the spec, its

“correct” but the program is not meeting the
needs of its users

 Need to change spec, and THEN change
program

© 2008 University of Colorado

Testing Terminology (Review)
 Error - a mistake made by a programmer

 implies that for some input i, F(i) ≠ expected output
 Fault - an incorrect state of a program that is entered because

of the error
 Some errors don’t cause failures right away, every state

between the error and the failure are faults
 For this class, however, you can think of a “fault” as being the

location in the code where the error exists
 Failure - a symptom of an error

 e.g. a crash, incorrect output, incorrect behavior, …

© 2008 University of Colorado

Testing Terminology, cont.
 Discussion

 A failure occurs only if a fault occurs, and a fault occurs
only if an error exists

 Note: not all faults are detected
 because you may need to execute a specific portion (e.g. state)

of the program for the failure to appear…
 …and it may be impossible to execute all “states” of a program

 Recall that Fred Brooks in No Silver Bullet talked about
complexity and one aspect of complexity is the sheer
number of states associated with software systems

© 2008 University of Colorado

An Example
 If a program contains an error, it does not necessarily lead to a failure

if (x < y) /* should be <= */
…

else
…

 The error may be a typo, or the error could be the result of the
programmer not understanding the problem

 The fault is the location of the error, e.g. the expression contained in
the if statement, or more explicitly the missing “=”

 A failure may occur if x==y and this if statement is executed

© 2008 University of Colorado

Creating Test Cases
 How do you pick test cases?

 We will look at two strategies for doing this
 Black Box Testing (aka Functional Testing)
 White Box Testing (aka Structural Testing)

 For now, think of trying to pick “categories”
of input that test the same thing

© 2008 University of Colorado

Example
int GreatestCommonDivisor(int x, int y)
 x=6 y=9, returns 3, tests common case
 x=2 y=4, returns 2, tests when x is the GCD
 x=3 y=5, returns 1, tests two primes
 x=9 y=0, returns ?, tests zero
 x=-3 y=9, returns ?, tests negative

 To test exhaustively is impossible (both parameters can take on an
infinite number of values)

 but with 5 categories identified, we can get by with only 5 test cases!

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.14
© 2006 Pearson/Prentice Hall

8.1 Software Faults and Failures
Orthogonal Defect Classification

Fault involving efficiency or correctness of algorithm or data
structure but not design

Algorithm

Fault that affects publications and maintenance notesDocumentation

Fault that occurs because of problems in repositories,
management changes, or version control

Build/package/merge
Fault in timing of shared and real-time resourcesTiming/serialization
Fault in data structure or code block initializationAssignment

Fault in program logic that fails to validate data and values
properly before they are used

Checking

Fault in interacting with other component or drivers via calls,
macros, control blocks, or parameter lists

Interface

Fault that affects capability, end-user interface, product
interface with hardware architecture, or global data structure

Function

MeaningFault Type

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.15
© 2006 Pearson/Prentice Hall

8.1 Software Faults and Failures
Sidebar 8.1 Hewlett-Packard’s Fault Classification

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.16
© 2006 Pearson/Prentice Hall

8.1 Software Faults and Failures
Sidebar 8.1 Faults for one Hewlett-Packard Division

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.17
© 2006 Pearson/Prentice Hall

8.2 Testing Issues
Testing Organization

• Module testing, component testing, or unit testing
• Integration testing
• Function testing
• Performance testing
• Acceptance testing
• Installation testing

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.18
© 2006 Pearson/Prentice Hall

8.2 Testing Issues
Testing Organization Illustrated

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.19
© 2006 Pearson/Prentice Hall

8.2 Testing Issues
Attitude Toward Testing

• Egoless programming: programs are viewed as
components of a larger system, not as the
property of those who wrote them
– This can be a hard attitude to adopt for some

programmers
– and is not an easy problem to solve, if it occurs

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.20
© 2006 Pearson/Prentice Hall

8.2 Testing Issues
Who Performs the Test?

• Independent test team
– avoid conflict (within development team)

• instead create “us vs. them” culture with testing team!
– improve objectivity
– allow testing and coding concurrently

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.21
© 2006 Pearson/Prentice Hall

8.2 Testing Issues
Views of the Test Objects

• Closed box or black box:
– functionality of the test objects

• Clear box or white box:
– structure of the test objects

© 2008 University of Colorado

Views of Test Objects
 How do you pick test cases?
 Two main approaches

 Functional Testing
 a.k.a. Black Box Testing

 Structural Testing
 a.k.a. White Box Testing

 Note: current testing research has moved beyond
these concepts…
 folding and sampling techniques are current

 …but they are used in this class as an introduction

© 2008 University of Colorado

Folding and Sampling

Input Space of Program

Samples Folds

Sample: A specific input to the program

Fold: A class of input that all test the same function

© 2008 University of Colorado

Functional Testing
 In functional testing, we test the

functionality of the system without
regard to its implementation
 The system is, in a sense, a black box

 because we cannot look inside to see how it
computes its output

 We provide input and receive output

© 2008 University of Colorado

Functional Testing, continued
 Functional Testing is a strategy for helping a software

engineer pick test cases
 This is useful, since selecting test cases is a tricky

problem
 A test suite should be “complete”…

 with respect to the program’s specification
 but how many test cases do you need to be complete?

 A test suite should be precise
 no duplicate test cases
 if a test suite takes too long to run, then it will get run less often

(which increases the chance that a fault goes undetected)

© 2008 University of Colorado

Functional Testing, continued
 Functional testing helps create test suites by providing a

criterion for selecting test cases:
 The requirements specification of a program lists functions that the

program must perform
 A test suite is complete when it tests every function
 For each function, determine “categories” of input that a function

should treat equivalently
 boundary conditions can be useful guides
 test both “typical” input and error conditions
 a test suite will need at least one test case for each category

associated with each function

© 2008 University of Colorado

Functional Testing: Step 1
 Identify functional categories in the

requirements specification that broadly
classifies functions the program must
perform
 Example: IT system for Car Dealer

 Car Database
 including creation, deletion, and update of entries for each car

owned by the dealership
 Employee Database
 Payroll
 Inventory Forecasting
 Report Generation
 Sorting

© 2008 University of Colorado

Functional Testing: Step 2
 Identify specification items in the spec that correspond to

functions the program must perform
 Each specification item should be assignable to one of your

functional categories
 This can be an iterative process, in which a specification item

identifies a new functional category
 Example

 The user shall be able to create a new entry in the car database. A
unique id will automatically be assigned to this entry. The user shall
then enter additional information about the new car in the fields
provided. (Car Database)

 The user shall be able to see a list of cars sorted by the time a car
has been in the inventory from longest to shortest (report
generation, sorting)

 The system shall notify users by e-mail whenever a direct deposit
into their bank account has occurred (payroll)

© 2008 University of Colorado

Functional Testing: Step 3
 Identify functional equivalence classes for each specification

item (like we saw for GCD earlier)
 Example: spec. item

 The user shall be able to see a list of cars sorted by the time a car
has been in the inventory from longest to shortest

 The functional classes might be
 List is requested on an empty car database
 List is requested on a car database with a single entry
 List is requested on a car database with many entries
 List is requested on a car database that has been edited (entries added,

then removed and/or updated)
 etc. (You need to determine when enough is enough... for some items it

may be possible to come up with a ton of categories; restrain yourself and
pick only the most critical)

© 2008 University of Colorado

Functional Testing: Step 4
 Determine test cases for each category

 You may only have one test case per category; however, its okay to pick
more than one test case per category

 Be on the look out for boundary conditions; sometimes they are handled in
the categories (i.e. zero, one, or many cars in database), sometimes they
are not. In the latter case, you will then need more than one test case in the
category to cover each boundary condition

 This means that in functional testing, “there is more than one way to skin a
cat”; one person's categories may be another person's test case, may be
another person's specification item. It all depends on the level of granularity
that you set for each concept.

 Identifying Test Cases
 List is requested on an empty car database: one test case (create empty

database, invoke function)
 List is requested on a car database with a single entry: one test case

(create empty database, add one car, invoke function)

© 2008 University of Colorado

Functional Testing: Step 5 & 6
 Step 5: Eliminate redundant test cases

 For example zero cars in the database will probably be a functional
equivalence class for several different spec. items;

 A single test will cover that functional class for all such items

 Step 6: Prioritize test cases
 You may not have the time or budget to test them all
 As such, give critical test cases higher priority…
 …while test cases that test obscure or uncommon errors can be

given lower priority
 You now have your test suite!

© 2008 University of Colorado

Structural Testing
 See lecture located here

 http://www.cs.colorado.edu/~kena/classes/
3308/f06/lectures/20/index.html

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.33
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Code Review

• Code walkthrough
– You present code/documentation you have written to team; focus is on

code, not coder!
– atmosphere is informal; team looks for problems and make’s suggestions

• Code inspection
– More formal version of walkthrough
– review team checks code/docs against a prepared list of concerns;

• initial meeting for overview
• then careful inspection by each member
• then second meeting to report findings

• How successful?
– 82% of faults found in development, found in inspections (Fagan)
– 93% of faults in 6000 line program found in inspections
– 85% of fualts in 10M line program found in inspections

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.34
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Fault Discovery Rate

2.0Acceptance test
3.0Integration test

10.0Code inspection
5.0Design Review
2.5Requirements review

Faults Found per Thousand
Lines of CodeDiscovery Activity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.35
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Sidebar 8.3 The Best Team Size for Inspections

• The preparation rate, not the team size,
determines inspection effectiveness

• The team’s effectiveness and efficiency depend
on their familiarity with their product

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.36
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Proving Code Correct

• Formal proof techniques
– Transform code to logical counterpart
– Make assertions about input
– Make assertions about each transformation
– Make assertions about output
– Use formal proof techniques (1st-ord. predicate logic)

• Symbolic execution
• Automated theorem-proving

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.37
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Proving Code Correct: An Illustration

Input Assertion:
A1: array(T) & len(T) == N

Output Assertion:

Aend:

array(T’) & len(T’) == N &
forall(i<N) → T’(i) ≤ T’(i+1) &
forall(i ≤N) → exists(j): T’(i) == T(j)

Need to prove that if A1 is true, then Aend
is true

Informally:

T’ starts out equal to T
We never assign a value to T’ that wasn’t in T
We always swap higher values with lower values
We do not quit until we go through the entire array
without finding a value out of place

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.38
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Testing versus Proving

Output Assertion:

Aend:

array(T’) & len(T’) == N &
forall(i<N) → T’(i) ≤ T’(i+1) &
forall(i ≤N) → exists(j): T’(i) == T(j)

Proofs are hard to do and don’t scale to
full programs; you can recoup some of the
benefits however by using assertions in
your code.

At the left, see how the output assertion is
translated into six lines of code; you can
leave those lines in until you are confident
the code is correct; then comment them
out before shipping the code

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.39
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Other types of coverage criteria (white box)

• Statement testing
• Branch testing
• Path testing
• Definition-use testing
• All-uses testing
• All-predicate-uses/some-computational-uses

testing
• All-computational-uses/some-predicate-uses

testing

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.40
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Relative Strengths of Test Strategies

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.41
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Comparing Techniques

• Effectiveness of fault-discovery techniques

FairFairPoorPoorCorrectness Proofs
FairGoodPoorPoorTesting

Not applicableFairFairGoodPrototypes
GoodExcellentExcellentFairReviews

Documentation
FaultsCode FaultsDesign Faults

Requirements
Faults

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.42
© 2006 Pearson/Prentice Hall

8.3 Unit Testing
Sidebar 8.4 Fault Discovery Efficiency at Contel IPC

• 17.3% during inspections of the system design
• 19.1% during component design inspection
• 15.1% during code inspection
• 29.4% during integration testing
• 16.6% during system and regression testing
• 0.1% after the system was placed in the field

• Demonstrates need for multiple testing
techniques in a software life cycle

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.43
© 2006 Pearson/Prentice Hall

8.4 Integration Testing

• Bottom-up
• Top-down
• Big-bang
• Sandwich testing
• Modified top-down
• Modified sandwich

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.44
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
Terminology

• Component Driver: a routine applies a test
case on a particular component

• Stub: a special-purpose program to simulate the
activity of the missing component

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.45
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
View of a System

• System viewed as a hierarchy of components

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.46
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
Big-Bang Integration Example

• Requires both stubs and drivers to test the
independent components; (not very useful)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.47
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
Bottom-Up Integration Example

• The sequence of tests and their dependencies

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.48
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
Top-Down Integration Example

• Only A is tested by itself
– Lower level components are simulated via stubs

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.49
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
Modified Top-Down Integration Example

• Each level’s components individually tested
before the merger takes place

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.50
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
Sandwich Integration Example

• Viewed system as three layers

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.51
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
Modified Sandwich Integration Example

• Allows upper-level components to be tested
before merging them with others

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.52
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
Comparison of Integration Strategies

hardHardEasyHardHardEasyAbility to plan and
control sequence

EasyMediumEasyEasyHardEasyAbility to test
particular paths

HighMediumHighMediumLowMediumWork parallelism at
beginning

YesYesYesYesYesNoStubs needed

YesYesYesYesNoYesComponent drivers
needed

EarlyEarlyLateEarlyEarlyLateTime to basic working
program

EarlyEarlyLateEarlyEarlyEarlyIntegration

Modified
sandwich

SandwichBig-bangModified top-
down

Top-
down

Bottom-up

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.53
© 2006 Pearson/Prentice Hall

8.4 Integration Testing
Sidebar 8.5 Builds at Microsoft

• The feature teams synchronize their work by building the product and
finding and fixing faults on a daily basis

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.54
© 2006 Pearson/Prentice Hall

8.6 Test Planning

• Establish test objectives
• Design test cases
• Write test cases
• Test test cases
• Execute tests
• Evaluate test results

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.55
© 2006 Pearson/Prentice Hall

8.6 Test Planning
Purpose of the Plan

• Test plan explains
– who does the testing
– why the tests are performed
– how tests are conducted
– when the tests are scheduled

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.56
© 2006 Pearson/Prentice Hall

8.6 Test Planning
Contents of the Plan

• What the test objectives are
• How the tests will be run
• What criteria will be used to determine when the

testing is complete

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 8.57
© 2006 Pearson/Prentice Hall

8.11 What this Chapter Means for You

• It is important to understand the difference between faults
and failures

• The goal of testing is to find faults, not to prove
correctness

• Can use:
– Functional Testing (black box)
– Structural Testing (white box)
– Folding and Sampling

• Proving code correct is difficult and non-scalable;
assertions can lower costs and achieve similar benefits

• After unit testing, integration testing begins
• Testing for large systems requires a test plan

