. .\

F):)

— [eX OK

Chapter 6

Considering
Objects

ISBN 0-13-146913-4
Prentice-Hall, 2006

Soltware Engineering

THEORY AND PRACTICE
THIRD EDITION

— ;l
\

SHARI LAWRENCE PFLEEGER
JOANNE ATLEE

Copyright 2006 Pearson/Prentice Hall. All rights reserved.

6.1 What is OO?

* Object-orientation is an approach to software
development that organizes both the problem and
its solution as a collection of discrete objects

— Each object has data (attributes) and behavior
(methods) given to it by its class

— Classes can be related to one another in various ways
 use-relationships known as associations
« whole-part relationships (aka aggregation/composition)
* is-a relationships (aka inheritance)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.3
© 2006 Pearson/Prentice Hall

6.1 What is OO?

Objects and Classes (continued)

« Examples of objects grouped into classes

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.4
© 2006 Pearson/Prentice Hall

6.1 What is OO?

Object-Orientation Characteristics

* |dentity

— Each object has a unique identity; often tied to the application domain
* Abstraction

— Each class provides a public API that defines the services and data it provides
« Classification

— Classes allow objects to be grouped into categories
« Encapsulation

— Classes have private data and methods that can’t be accessed externally
* Inheritance

— Classes can have is-a relationships (more later)
* Polymorphism

— We can deal with objects as instances of a base class but they will provide
behavior that matches their true (sub) class

« Persistence: we can save/load objects just as we can save/load data

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.5
© 2006 Pearson/Prentice Hall

6.1 What is OO?
Objects and Classes (continued)

* We can represent a class using a box

 Box represents
— object’'s name

— attributes Elephant

— behaviors Color: text
Number_of tusks: Integer

Location: text

Weight: float

Height: float

move_to (location)
wash (date)
feed (amount, date, time)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.6
© 2006 Pearson/Prentice Hall

6.1 What is OO?

Classes Hierarchy

A class hierarchy is organized according to the
sameness or differences among classes

— Exhibits OO classes’ inheritance structure
* A class is refined into subclasses

* Subclasses inherit the structure (atts) as well as
the behavior (methods) of its superclass

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.7
© 2006 Pearson/Prentice Hall

Inheritance Example

Animal
iaad \
Pachyderm % Canine
roam() Feline roam()

roam() ﬂ
\ Wolf

- makeNoise()
Rhino

makeNoise()

Dog

makeNoise()

Hippo Tiger Cat

makeNoise() makeNoise() makeNoise()

Elephant

makeNoise()

Lion
makeNoise()

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.8
© 2006 Pearson/Prentice Hall

Polymorphism Example

Animal Animal a = new Lion()
makeNoise() a.makeNoise();
roam() a.roam();
sleep() ﬁﬁ a.sleep();
Feline
roam()
Lion

makeNoise()

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.9
© 2006 Pearson/Prentice Hall

6.2 The OO Development Process

* One advantage of OO development is its
consistency of terminology/concepts across
various stages of the software life cycle

« Describing classes using OO representation
requires three perspectives

— Static views: descriptions of the object, attributes,
behaviors, and relationships

— Dynamic views: describe communication,
control/timing, and the state and changes in state

— Restrictions: describe constraints on the structure

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.10
© 2006 Pearson/Prentice Hall

6.2 The OO Development Process
OO Requirements

* Done in user’s language and discusses the
concepts and scenarios likely in the application
domain

« Concepts include services and responsibilities
 Domain knowledge enables the developers

— to understand the context of use for the system

— to describe requirements in a way that users
understand

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.11
© 2006 Pearson/Prentice Hall

6.2 The OO Development Process
OO Design

« Starts with OO requirements representation

— Use cases, class diagrams that document domain
knowledge
« System design identifies overall system
architecture

— Architectural components can be decomposed into
subsystems

— Classes can be assigned to subsystems if needed

* Program design adds more detail to classes,
including relationships, details of 3rd party class
libraries to be used, and non-functional concerns

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.12
© 2006 Pearson/Prentice Hall

6.2 The OO Development Process
OO Coding and Testing

« Coding proceeds by translating the models to an
OO programming language
* |tis necessary to refine the hierarchical structures

and make adjustments as the requirements grow
and mature

» Testing involves the same activities that are
performed with any software system
— Unit testing
— Integration testing
— System testing

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.13
© 2006 Pearson/Prentice Hall

6.3 Use Cases

« Describes particular functionality that a system is
supposed to perform or exhibit by modeling the
dialog that a user, external system, or other
entity will have with the system to be developed

« Diagrams have four elements
— actors
— cases
— extensions
— uses

* Note: use case diagrams are good for giving an
overview but horrible at providing useful details

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.14
© 2006 Pearson/Prentice Hall

6.1 What is OO?

Sidebar 6.1 Royal Service Station Requirements

Royal Service station provides three types of services

The system must track bills, the product, and services

System to control inventory

The system to track credit history, and payments overdue

The system applies only to regular repeat customers

The system must handle the data requirements for interfacing with other systems
The system must record tax and related information

The station must be able to review tax record upon demand

The system will send periodic message to customers

Customers can rent parking space in the station parking lot

The system maintains a repository of account information

The station manager must be able to review accounting information upon demand
The system can report an analysis of prices and discounts

The system can not be unavailable for more than 24 hours

The system must protect customer information from unauthorized access

The system will automatically notify the owners of dormant accounts

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.15
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Example of Use Cases

 High-level view of Royal Service Station
requirements

Customer ~N/ N

\

. Billing Services |

,«"'//
y W
y - N\ /
. Refueling . Parking | | Maintenance
y N y
> / ~ o ~ - e
Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.16

© 2006 Pearson/Prentice Hall

6.3 Use Cases
Example of Use Cases (continued)

* First extension part of the use case diagram of Royal
Service Station requirements to include preventive
maintenance

Parking

Refueling

4\ DT | Maintenance
I " Services
Manager

- Cusfomer
| extends

- Preventive ‘
. Maintenance

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.17
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Example of Use Cases (continued)

« Second extension of Royal Service Station diagram to
Include credit card system

Credit Card System &}

) .

Customer Billing __—7 e

Services

Maﬁager

-@ Maintenance

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.18
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Example of Use Cases (continued)

« Third extension of Royal Service Station diagram

to include inventory and accounting
Credit Card SystemQ

Biling 7
.Services
S A “Maintenance
EIMICES Services
Parking
Accounting Services
Services M,

Manager

Controlling

==

Parts Ordering
System

Customer, “

Fuel Ordering
e System

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.19
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Identifying Participants

* What stakeholders interact with the system

— A stakeholder can be
* auser
e a system
— Interactions can include
« using the system to get information
* using the system to complete a task
 supplying the system with information

 supplying a service to the system that it needs to perform
its own tasks

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.20
© 2006 Pearson/Prentice Hall

Use Case 1 Buy Stocks over the Web A4

Example Use Case [o s

Scope: Personal Advisors / Finance package (PAF)
Level: User goal
Stakeholders and Interests:

Purchaser—wants to buy stocks and get them added to the PAF portfolio
automatically.

o U Se Cases h ave Stock agency—wants full purchase information.
Precondition: User already has PAF open.

Minimal Guarantee: Sufficient logging information will exist so that PAF can detect
— aCtO rS that something went wrong and ask the user to provide details.

Success Guarantee: Remote web site has acknowledged the purchase; the logs and
the user's portfolio are updated.

— SUCCGSS path Main Success Scenario:
— failure cases
. PAF shows the user the new portfolio standing.

* Use cases may
— Vva ry | N fo 'm al |ty g)a(.tir::rl:hnass:er wants a web site PAF does not support:

2a1. System gets new suggestion from purchaser, with option to cancel use case.

_ i nvo ke Othe r use CaseS 3a. Web failure of any sort during setup:
3a1. System reports failure to purchaser with advice, backs up to previous step.
3a2. Purchaser either backs out of this use case or tries again.
4a. Computer crashes or is switched off during purchase transaction:
4a1. (What do we do here?)
4b. Web site does not acknowledge purchase, but puts it on delay:
4b1. PAF logs the delay, sets a timer to ask the purchaser about the outcome.
5a. Web site does not return the needed information from the purchase:
5a1. PAF logs the lack of information, has the purchaser update guestioned
purchase.

1. Purchaser selects to buy stocks over the web.

2. PAF gets name of web site to use (E*Trade, Schwab, etc.) from user.

3. PAF opens web connection to the site, retaining control.

4. Purchaser browses and buys stock from the web site.

5. PAF intercepts responses from the web site and updates the purchaser’s portfolio.
6

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.21
© 2006 Pearson/Prentice Hall

Example Use Case (Low Formality)

Use Case 4 ' Buy Something (Casual Version) .~

The Requestor initiates a request and sends it to her or his Approver. The Approver
checks that there is money in the budget, checks the price of the goods, completes
the request for submission, and sends it to the Buyer. The Buyer checks the contents
of storage, finding the best vendor for goods. The Authorizer validates Approvers
signature. The Buyer completes request for ordering, initiates PO with Vendor. The
Vendor delivers goods to Receiving, gets receipt for delivery (out of scope of system
under design). The Receiver registers delivery, sends goods to Requestor. The Re-
questor marks request delivered.

At any time prior to receiving goods, the Requestor can change or cancel the re-
quest. Canceling it removes it from any active processing (deletes it from system?).
Reducing the price leaves it intact in processing. Raising the price sends it back to
the Approver.

* Note: Examples come from Alistair Cockburn’s
excellent book: “Writing Effective Use Cases”
Copyright 2001. Addison-Wesley

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.22
© 2006 Pearson/Prentice Hall

6.4 Representing OO: An Example Using UML

UML in the OO Process

« The Unified Modeling Language (UML) provides
multiple notations for representing information in

a software life cycle
— Activity diagrams
— Class diagrams
— Sequence diagrams
— Collaboration diagrams
— Package diagrams
— Component diagrams
— Deployment diagrams

* We will cover only a few

Pfleeger and Atlee, Software Engineering: Theory and Practice
© 2006 Pearson/Prentice Hall

Page 6.23

6.4 Representing OO: An Example Using UML
UML in the OO Process (continued)

 How UML can be used in life cycle (note:
component/deployment diagrams in wrong place!)

Requirements Design Coding
& N
UML use case |2 | [ymL activity UML state
descriptions and 2 diagrams diagrams
diagrams UML package
, W diagrams
Object models : VA lnD_f i
(e H] |
_ \ UML class UML object =
Requirements i - diagrams L diagrams i UML
Specifications @ component
<P o diagrams
Scenarios | 3]
- 5
Workflow diagrams] — 5 ! UML
Clags de_f Inltlo_ns and sequence . Collaboration © ! zfag:ne:
relationships | diagrams diagrams E .
Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.24

© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

How do you find classes

« They will often be obvious as you learn about the
application domain

— What are the important concepts that need to be
tracked by the system?

« What are their attribues?
* What services do they provide?

* One (slightly useful) trick

— Look for nouns (objects) and verbs (methods) in the
documents provided by your users

— This gives you a candidate set of objects that can be
evolved into classes over time

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.25
© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

UML Diagram

A UML box used to illustrate the component of a class

Class name

Attribute : type = initial value

Operation(arg list) : return type

Bill

Issue_date : Date
Payment_date . Date

price()

taxes()

customer()

purchases()

add_to_bill{customer,
amount, date)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.26
© 2006 Pearson/Prentice Hall

6.5 OO0 System Design
UML Diagram to Describe Relationship

 |Inheritance relationship (is-a relationship): lower box
inherits the attributes and behaviors of the upper box

Animal

food type
location

makeNoise()
eat()
roam()

Hippo

makeNoise()
eat()

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.27
© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

UML Diagram to Describe Relationship (continued)

« Each order is associated with salesperson (associated)

* The order item is part of the order (composition); the
order also has a customer (aggregation)

Salesperson

1

receives

Ordered item

includes

L.®

1

Order

L\ has

Customer

Pfleeger and Atlee, Software Engineering: Theory and Practice
© 2006 Pearson/Prentice Hall

Page 6.28

6.5 OO0 System Design

UML Diagram to Describe Relationship (continued)

« Graphical representation of several other ways of
denoting relationships between classes

A B One B with each A; one

A with each B
1 1

A B Same as above

A 1 * B Zero or more Bs with each
A; one A with each B

A * * B Zero or more Bs with each
A; ditto As with each B

A 1 2.5 B Two to Five Bs with each
A; one A with each B

A * B Zero or more Bs with each
A; B knows nothing about A

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.29

© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

First Cut at Royal Service Station Design

Periodic | Customer |-| Warning
Messages name Letters
text ‘ | address text
/| birth_date :
Account Crsedgtgrﬁrd Issue_date Manager
account_number y f,,,ﬁ.[?payment_date
I e Vehicle | Part
Purchase -~ _~ Maintenance| | part_number
A date < price price
/ |tax_rate o discount_rate
s/ = o' min_quantity =2
) | Inventory | | current_quantity
Fuel 1
price = -”" N
discount_rate r Parkin Parts Fuel
min_quantity=100 || \5cation Ordering Ordering
current quantity || price System System

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.30

© 2006 Pearson/Prentice Hall

6.5 OO0 System Design
Second Cut at Royal Service Station Design

Customer Message [WariTG MPeriodic
—_ essages
o = o Letters | i
birth_date \\ text
account_number| jPurchase ™ ——
/ E&g;[erate b 1 il Stat
/ N\ : ation
Credit Card / AN issue_aate Manager
. payment_date g
System A prieerwces "
/ |5 Vehicle
Parking Space | / discount_raté | maintenance
location ;’f Refuel price
e T gallons \
Parl-(mg price A" Inventory Part
location 7 = \ part_number
price /S - \ 8_r|ce it
— Parts Fuel IS UL e
Fuel p A min_quantity =2
min_quantity=100 %r;’s‘ig:}lg %?seignmg current_quantity
current_quantity

Pfleeger and Atlee, Software Engineering: Theory and Practice

© 2006 Pearson/Prentice Hall

Page 6.31

6.5 OO0 System Design
Third and Final Cut at Royal Service Station Design

Message
text <

Customer

name
address
birth_date

account_number

Parking

price

1
0..1

Parking Space

Mocaﬁon

]is_available()

- Periodic
Warning Messages Bill Credit Card
Letters | e System
5 i | ~ payment_date
\1 | price()
. Purchase 1 »/tax()
date ¢
tax_rate 1.* e gir;r_lce
i \ ation
’Ea{;(%e)() discount_rate \ 'dormant_account()
0. price() | —
. Vebhicle
~ Fuel Refuel Maintenance
min_quantity=100 0.% - = = price |
current_quantity | grice price() |
1 price() 0.
B, | e Part
Inventory ~ part_number
e | jordertueicy] | o FUSL | BEE b te
Ordering - orger part() — Ordering | 9t sl
System | System min_quantity =2
current_quantity

Pfleeger and Atlee, Software Engineering: Theory and Practice
© 2006 Pearson/Prentice Hall

Page 6.32

6.5 OO0 System Design

Package Diagram

* View the system as a small collection of
packages, which can be expanded to a larger set
of classes

— Show dependencies among classes that belong to
different packages

« Two items are dependent if changes to the definition of
one may cause changes to the other

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.33
© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

Package Diagram for the Royal Service Station

» There are four major packages
» The service package consists of five key classes

~ . External
Products = | Systems
; | - - Services
- Customers |
....................... Serices
price . discount_rate _/ehicle
= ' Maintenance
Refuel price
i Gallons ori
Parking Space grice price()
location " price() ‘
is_available()
Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.34

© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

Interaction Diagram

* Describe how operations and behaviors are
handled by the objects in the design

« Two kinds of interaction diagrams

— Sequence diagram: shows the sequence in which
activities or behaviors occur

— Collaboration diagram: shows how the objects are
connected statically

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.35
© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

Sequence Diagram for the Royal Service Station

« Showing the use case of the refuel class

Service Credit Card ,
Customer Station System urchase Refuel
- refuel () ’

- |verify customer| |
| |(credit_card_ | |
-~ num, amount) |

' [pay_by_cash ()

T cancel L "
credit card transaction | |New_purchase|
transaction .| okay (customer, | |
ghfrl{sc)jate’ " Tnew_refuel
- |(cusfomer, | |
T date, gallons)
Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.36

© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

Collaboration Diagram for the Royal Service Station

« Shows the parking use case

Customer

1: parking () 'V:3: parking_at (location)

4: new_purchase (customer,
p}a}[kfingf,fdate, location)

Parking Space ‘Purchase

'12: next_available () 5: new_parking (customer,
\ location)

Service Station Parking

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.37
© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

State Diagram

« To document a dynamic model of the system

* Shows
— the possible states an object can take
— the events that trigger the transition from one state to the next
— the actions that result from each state change

* Needed only for classes where the objects exhibit
dynamic behavior, with many attribute values and
messages

* Note: state diagrams in textbook are horrible! (They don’t
show labels, use incorrect notation, and don’'t make
sense!) Fortunately, we've seen examples of good state
diagrams in the concurrency textbook

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.38
© 2006 Pearson/Prentice Hall

State Diagram Example: whole system Granularity

* Exam P le Purchasing
from exit / eject card
UML

Reference Q@ = woury Ml ®
b e ~@

“Three
Amigos”.
@”: '9955 (sotme)
Ad d iSOI’l .—>(Idle >e push "buy" push "resume"
Wesley

(Confirming)

push "cancel" push "confirm"

(Lo)
Selling

insert card

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.39
© 2006 Pearson/Prentice Hall

6.5 OO0 System Design

State Diagram for the Royal Service Station System

« State diagram for the inventory class, orders parts or fuel: a different

condition triggers each state

~ Inventory
order_fuel () = N
 order_part () . .
[fuel low s [parts low
,. in stock] . instock]
Low fuel |« . Normal stock | > Low parts
' ,' ‘,f""[deliver [delivell:"‘*:,_,_ /
fuel] parts] ‘

Y order fuel |

1 N Order parts

Pfleeger and Atlee, Software Engineering: Theory and Practice
© 2006 Pearson/Prentice Hall

Page 6.40

6.5 OO0 System Design
Activity Diagram

* To model the flow of procedures or activities in a class

* A decision node is used to represent a choice of which
activity to invoke

[otherwise] Enrolling in the
’ University for the first
Slincorrect] A [help available] s me
Fill Out Enroliment N Obtain Help to Fill AD #: 007
Forms [trivial Out Forms
problems] \
[correct]
y
| (Attend Unwersw
Enroll in University = Qverview =
J Presentation
I =
Enroll In Semmar(s] ‘ Make Initial Tuition
Payment
Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.41

© 2006 Pearson/Prentice Hall

OO Design: How To

« Basic steps (note: different from text book)

Step 1: Analyze/Create use cases
Step 2: Create activity diagrams for each use case
Step 3: Create class diagram based on 1

Step 4: Create interaction diagrams for activities contained in
diagrams from step 2

Step 5: Create state diagrams for classes created in step 3

Step 6: lterate; each step above will reveal information about the
other models that will need to be updated

« for instance, methods specified on objects in a sequence
diagram, have to be added to the class diagram

 classes in the class diagram, should appear in at least one
sequence diagram

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.42

© 2006 Pearson/Prentice Hall

OO Design: How To (as a picture)

Document
- Use Cases Structure Using
Modify Use Case
With New Class
Identify
Classes/Methods
Activity Diagrams
Document Individual

Activities Using

Class Diagram ¢

| Identify Classes/Methods

Document Interesting States/Behaviors Using
i Interaction Diagrams

(Sequence/Collaboration),

State Diagrams

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.43
© 2006 Pearson/Prentice Hall

