
CSCI 5828: Foundations of
Software Engineering

Lecture 22: OO Design
Slides created by Pfleeger and Atlee for the SE textbook

Some modifications to the original slides have been made by Ken
Anderson for clarity of presentation

04/03/2008

ISBN 0-13-146913-4
Prentice-Hall, 2006

Chapter 6

Considering
Objects

Copyright 2006 Pearson/Prentice Hall. All rights reserved.

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.3
© 2006 Pearson/Prentice Hall

6.1 What is OO?

• Object-orientation is an approach to software
development that organizes both the problem and
its solution as a collection of discrete objects
– Each object has data (attributes) and behavior

(methods) given to it by its class

– Classes can be related to one another in various ways
• use-relationships known as associations
• whole-part relationships (aka aggregation/composition)
• is-a relationships (aka inheritance)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.4
© 2006 Pearson/Prentice Hall

6.1 What is OO?
Objects and Classes (continued)

• Examples of objects grouped into classes

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.5
© 2006 Pearson/Prentice Hall

6.1 What is OO?
Object-Orientation Characteristics

• Identity
– Each object has a unique identity; often tied to the application domain

• Abstraction
– Each class provides a public API that defines the services and data it provides

• Classification
– Classes allow objects to be grouped into categories

• Encapsulation
– Classes have private data and methods that can’t be accessed externally

• Inheritance
– Classes can have is-a relationships (more later)

• Polymorphism
– We can deal with objects as instances of a base class but they will provide

behavior that matches their true (sub) class

• Persistence: we can save/load objects just as we can save/load data

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.6
© 2006 Pearson/Prentice Hall

6.1 What is OO?
Objects and Classes (continued)

• We can represent a class using a box
• Box represents
– object’s name
– attributes
– behaviors

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.7
© 2006 Pearson/Prentice Hall

6.1 What is OO?
Classes Hierarchy

• A class hierarchy is organized according to the
sameness or differences among classes
– Exhibits OO classes’ inheritance structure

• A class is refined into subclasses
• Subclasses inherit the structure (atts) as well as

the behavior (methods) of its superclass

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.8
© 2006 Pearson/Prentice Hall

Inheritance Example

Cat
makeNoise()

Tiger
makeNoise()

Rhino
makeNoise()

Animal
sleep()

Feline
roam()

Canine
roam()

Pachyderm
roam()

Wolf
makeNoise()

Wolf

Dog
makeNoise()

Lion
makeNoise()

Elephant
makeNoise()

Hippo
makeNoise()

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.9
© 2006 Pearson/Prentice Hall

Polymorphism Example

Animal

sleep()
roam()

makeNoise()

Feline

roam()

Lion

makeNoise()

Animal a = new Lion()
a.makeNoise();
a.roam();
a.sleep();

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.10
© 2006 Pearson/Prentice Hall

6.2 The OO Development Process

• One advantage of OO development is its
consistency of terminology/concepts across
various stages of the software life cycle

• Describing classes using OO representation
requires three perspectives
– Static views: descriptions of the object, attributes,

behaviors, and relationships
– Dynamic views: describe communication,

control/timing, and the state and changes in state
– Restrictions: describe constraints on the structure

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.11
© 2006 Pearson/Prentice Hall

6.2 The OO Development Process
OO Requirements

• Done in user’s language and discusses the
concepts and scenarios likely in the application
domain

• Concepts include services and responsibilities
• Domain knowledge enables the developers

– to understand the context of use for the system
– to describe requirements in a way that users

understand

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.12
© 2006 Pearson/Prentice Hall

6.2 The OO Development Process
OO Design

• Starts with OO requirements representation
– Use cases, class diagrams that document domain

knowledge
• System design identifies overall system

architecture
– Architectural components can be decomposed into

subsystems
– Classes can be assigned to subsystems if needed

• Program design adds more detail to classes,
including relationships, details of 3rd party class
libraries to be used, and non-functional concerns

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.13
© 2006 Pearson/Prentice Hall

6.2 The OO Development Process
OO Coding and Testing

• Coding proceeds by translating the models to an
OO programming language

• It is necessary to refine the hierarchical structures
and make adjustments as the requirements grow
and mature

• Testing involves the same activities that are
performed with any software system
– Unit testing
– Integration testing
– System testing

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.14
© 2006 Pearson/Prentice Hall

6.3 Use Cases

• Describes particular functionality that a system is
supposed to perform or exhibit by modeling the
dialog that a user, external system, or other
entity will have with the system to be developed

• Diagrams have four elements
– actors
– cases
– extensions
– uses

• Note: use case diagrams are good for giving an
overview but horrible at providing useful details

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.15
© 2006 Pearson/Prentice Hall

6.1 What is OO?
Sidebar 6.1 Royal Service Station Requirements

• Royal Service station provides three types of services
• The system must track bills, the product, and services
• System to control inventory
• The system to track credit history, and payments overdue
• The system applies only to regular repeat customers
• The system must handle the data requirements for interfacing with other systems
• The system must record tax and related information
• The station must be able to review tax record upon demand
• The system will send periodic message to customers
• Customers can rent parking space in the station parking lot
• The system maintains a repository of account information
• The station manager must be able to review accounting information upon demand
• The system can report an analysis of prices and discounts
• The system can not be unavailable for more than 24 hours
• The system must protect customer information from unauthorized access
• The system will automatically notify the owners of dormant accounts

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.16
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Example of Use Cases

• High-level view of Royal Service Station
requirements

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.17
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Example of Use Cases (continued)

• First extension part of the use case diagram of Royal
Service Station requirements to include preventive
maintenance

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.18
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Example of Use Cases (continued)

• Second extension of Royal Service Station diagram to
include credit card system

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.19
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Example of Use Cases (continued)

• Third extension of Royal Service Station diagram
to include inventory and accounting

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.20
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Identifying Participants

• What stakeholders interact with the system
– A stakeholder can be

• a user
• a system

– Interactions can include
• using the system to get information
• using the system to complete a task
• supplying the system with information
• supplying a service to the system that it needs to perform

its own tasks

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.21
© 2006 Pearson/Prentice Hall

Example Use Case

• Use cases have
– actors
– success path
– failure cases

• Use cases may
– vary in formality
– invoke other use cases

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.22
© 2006 Pearson/Prentice Hall

Example Use Case (Low Formality)

• Note: Examples come from Alistair Cockburn’s
excellent book: “Writing Effective Use Cases”
Copyright 2001. Addison-Wesley

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.23
© 2006 Pearson/Prentice Hall

6.4 Representing OO: An Example Using UML
UML in the OO Process

• The Unified Modeling Language (UML) provides
multiple notations for representing information in
a software life cycle
– Activity diagrams
– Class diagrams
– Sequence diagrams
– Collaboration diagrams
– Package diagrams
– Component diagrams
– Deployment diagrams

• We will cover only a few

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.24
© 2006 Pearson/Prentice Hall

6.4 Representing OO: An Example Using UML
UML in the OO Process (continued)

• How UML can be used in life cycle (note:
component/deployment diagrams in wrong place!)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.25
© 2006 Pearson/Prentice Hall

6.5 OO System Design
How do you find classes

• They will often be obvious as you learn about the
application domain
– What are the important concepts that need to be

tracked by the system?
• What are their attribues?
• What services do they provide?

• One (slightly useful) trick
– Look for nouns (objects) and verbs (methods) in the

documents provided by your users
– This gives you a candidate set of objects that can be

evolved into classes over time

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.26
© 2006 Pearson/Prentice Hall

6.5 OO System Design
UML Diagram

• A UML box used to illustrate the component of a class

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.27
© 2006 Pearson/Prentice Hall

6.5 OO System Design
UML Diagram to Describe Relationship

• Inheritance relationship (is-a relationship): lower box
inherits the attributes and behaviors of the upper box

Animal

location
food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.28
© 2006 Pearson/Prentice Hall

6.5 OO System Design
UML Diagram to Describe Relationship (continued)

• Each order is associated with salesperson (associated)
• The order item is part of the order (composition); the

order also has a customer (aggregation)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.29
© 2006 Pearson/Prentice Hall

6.5 OO System Design
UML Diagram to Describe Relationship (continued)

• Graphical representation of several other ways of
denoting relationships between classes

A B
One B with each A; one
A with each B

A B
11

Same as above

A B
*1 Zero or more Bs with each

A; one A with each B

A B
** Zero or more Bs with each

A; ditto As with each B

A B
2..51

A B
*

Two to Five Bs with each
A; one A with each B

Zero or more Bs with each
A; B knows nothing about A

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.30
© 2006 Pearson/Prentice Hall

6.5 OO System Design
First Cut at Royal Service Station Design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.31
© 2006 Pearson/Prentice Hall

6.5 OO System Design
Second Cut at Royal Service Station Design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.32
© 2006 Pearson/Prentice Hall

6.5 OO System Design
Third and Final Cut at Royal Service Station Design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.33
© 2006 Pearson/Prentice Hall

6.5 OO System Design
Package Diagram

• View the system as a small collection of
packages, which can be expanded to a larger set
of classes
– Show dependencies among classes that belong to

different packages
• Two items are dependent if changes to the definition of

one may cause changes to the other

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.34
© 2006 Pearson/Prentice Hall

6.5 OO System Design
Package Diagram for the Royal Service Station

• There are four major packages
• The service package consists of five key classes

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.35
© 2006 Pearson/Prentice Hall

6.5 OO System Design
Interaction Diagram

• Describe how operations and behaviors are
handled by the objects in the design

• Two kinds of interaction diagrams
– Sequence diagram: shows the sequence in which

activities or behaviors occur
– Collaboration diagram: shows how the objects are

connected statically

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.36
© 2006 Pearson/Prentice Hall

6.5 OO System Design
Sequence Diagram for the Royal Service Station

• Showing the use case of the refuel class

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.37
© 2006 Pearson/Prentice Hall

6.5 OO System Design
Collaboration Diagram for the Royal Service Station

• Shows the parking use case

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.38
© 2006 Pearson/Prentice Hall

6.5 OO System Design
State Diagram

• To document a dynamic model of the system
• Shows

– the possible states an object can take
– the events that trigger the transition from one state to the next
– the actions that result from each state change

• Needed only for classes where the objects exhibit
dynamic behavior, with many attribute values and
messages

• Note: state diagrams in textbook are horrible! (They don’t
show labels, use incorrect notation, and don’t make
sense!) Fortunately, we’ve seen examples of good state
diagrams in the concurrency textbook

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.39
© 2006 Pearson/Prentice Hall

State Diagram Example: Whole System Granularity

• Example
from
UML
Reference
Manual by
“Three
Amigos”.
© 1999
Addison
Wesley

Purchasing

Idle

Identify

Selecting

Confirming

Selling

fail

insert card

push "cancel"

push "buy" push "resume"

push "confirm"

exit / eject card

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.40
© 2006 Pearson/Prentice Hall

6.5 OO System Design
State Diagram for the Royal Service Station System

• State diagram for the inventory class, orders parts or fuel: a different
condition triggers each state

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.41
© 2006 Pearson/Prentice Hall

6.5 OO System Design
Activity Diagram

• To model the flow of procedures or activities in a class
• A decision node is used to represent a choice of which

activity to invoke

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.42
© 2006 Pearson/Prentice Hall

OO Design: How To

• Basic steps (note: different from text book)
– Step 1: Analyze/Create use cases
– Step 2: Create activity diagrams for each use case
– Step 3: Create class diagram based on 1
– Step 4: Create interaction diagrams for activities contained in

diagrams from step 2
– Step 5: Create state diagrams for classes created in step 3
– Step 6: Iterate; each step above will reveal information about the

other models that will need to be updated
• for instance, methods specified on objects in a sequence

diagram, have to be added to the class diagram
• classes in the class diagram, should appear in at least one

sequence diagram

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.43
© 2006 Pearson/Prentice Hall

OO Design: How To (as a picture)

Use Cases

Class Diagram

Activity Diagrams

Ident i fy

Classes/Methods

Document

Structure Using

Interaction Diagrams

(Sequence/Collaboration)

Document Individual

Activities Using

State Diagrams

Document Interesting States/Behaviors Using

Identify Classes/Methods

Modify Use Case

With New Class

