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6.1 What is OO?

• Object-orientation is an approach to software
development that organizes both the problem and
its solution as a collection of discrete objects
– Each object has data (attributes) and behavior

(methods) given to it by its class

– Classes can be related to one another in various ways
• use-relationships known as associations
• whole-part relationships (aka aggregation/composition)
• is-a relationships (aka inheritance)
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6.1 What is OO?
Objects and Classes (continued)

• Examples of objects grouped into classes
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6.1 What is OO?
Object-Orientation Characteristics

• Identity
– Each object has a unique identity; often tied to the application domain

• Abstraction
– Each class provides a public API that defines the services and data it provides

• Classification
– Classes allow objects to be grouped into categories

• Encapsulation
– Classes have private data and methods that can’t be accessed externally

• Inheritance
– Classes can have is-a relationships (more later)

• Polymorphism
– We can deal with objects as instances of a base class but they will provide

behavior that matches their true (sub) class

• Persistence: we can save/load objects just as we can save/load data
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6.1 What is OO?
Objects and Classes (continued)

• We can represent a class using a box
• Box represents
– object’s name
– attributes
– behaviors
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6.1 What is OO?
Classes Hierarchy

• A class hierarchy is organized according to the
sameness or differences among classes
– Exhibits OO classes’ inheritance structure

• A class is refined into subclasses
• Subclasses inherit the structure (atts) as well as

the behavior (methods) of its superclass
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Inheritance Example

Cat
makeNoise()

Tiger
makeNoise()

Rhino
makeNoise()

Animal
sleep()

Feline
roam()

Canine
roam()

Pachyderm
roam()

Wolf
makeNoise()

Wolf

Dog
makeNoise()

Lion
makeNoise()

Elephant
makeNoise()

Hippo
makeNoise()
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Polymorphism Example

Animal

sleep()
roam()

makeNoise()

Feline

roam()

Lion

makeNoise()

Animal a = new Lion()
a.makeNoise();
a.roam();
a.sleep();
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6.2 The OO Development Process

• One advantage of OO development is its
consistency of terminology/concepts across
various stages of the software life cycle

• Describing classes using OO representation
requires three perspectives
– Static views: descriptions of the object, attributes,

behaviors, and relationships
– Dynamic views: describe communication,

control/timing, and the state and changes in state
– Restrictions: describe constraints on the structure
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6.2 The OO Development Process
OO Requirements

• Done in user’s language and discusses the
concepts and scenarios likely in the application
domain

• Concepts include services and responsibilities
• Domain knowledge enables the developers

– to understand the context of use for the system
– to describe requirements in a way that users

understand
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6.2 The OO Development Process
OO Design

• Starts with OO requirements representation
– Use cases, class diagrams that document domain

knowledge
• System design identifies overall system

architecture
– Architectural components can be decomposed into

subsystems
– Classes can be assigned to subsystems if needed

• Program design adds more detail to classes,
including relationships, details of 3rd party class
libraries to be used, and non-functional concerns
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6.2 The OO Development Process
OO Coding and Testing

• Coding proceeds by translating the models to an
OO programming language

• It is necessary to refine the hierarchical structures
and make adjustments as the requirements grow
and mature

• Testing involves the same activities that are
performed with any software system
– Unit testing
– Integration testing
– System testing
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6.3 Use Cases

• Describes particular functionality that a system is
supposed to perform or exhibit by modeling the
dialog that a user, external system, or other
entity will have with the system to be developed

• Diagrams have four elements
– actors
– cases
– extensions
– uses

• Note: use case diagrams are good for giving an
overview but horrible at providing useful details
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6.1 What is OO?
Sidebar 6.1 Royal Service Station Requirements

• Royal Service station provides three types of services
• The system must track bills, the product, and services
• System to control inventory
• The system to track credit history, and payments overdue
• The system applies only to regular repeat customers
• The system must handle the data requirements for interfacing with other systems
• The system must record tax and related information
• The station must be able to review tax record upon demand
• The system will send periodic message to customers
• Customers can rent parking space in the station parking lot
• The system maintains a repository of account information
• The station manager must be able to review accounting information upon demand
• The system can report an analysis of prices and discounts
• The system can not be unavailable for more than 24 hours
• The system must protect customer information from unauthorized access
• The system will automatically notify the owners of dormant accounts
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6.3 Use Cases
Example of Use Cases

• High-level view of Royal Service Station
requirements



Pfleeger and Atlee, Software Engineering: Theory and Practice Page 6.17
© 2006 Pearson/Prentice Hall

6.3 Use Cases
Example of Use Cases (continued)

• First extension part of the use case diagram of Royal
Service Station requirements to include preventive
maintenance
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6.3 Use Cases
Example of Use Cases (continued)

• Second extension of Royal Service Station diagram to
include credit card system
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6.3 Use Cases
Example of Use Cases (continued)

• Third extension of Royal Service Station diagram
to include inventory and accounting
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6.3 Use Cases
Identifying Participants

• What stakeholders interact with the system
– A stakeholder can be

• a user
• a system

– Interactions can include
• using the system to get information
• using the system to complete a task
• supplying the system with information
• supplying a service to the system that it needs to perform

its own tasks
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Example Use Case

• Use cases have
– actors
– success path
– failure cases

• Use cases may
– vary in formality
– invoke other use cases
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Example Use Case (Low Formality)

• Note: Examples come from Alistair Cockburn’s
excellent book: “Writing Effective Use Cases”
Copyright 2001. Addison-Wesley
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6.4 Representing OO: An Example Using UML
UML in the OO Process

• The Unified Modeling Language (UML) provides
multiple notations for representing information in
a software life cycle
– Activity diagrams
– Class diagrams
– Sequence diagrams
– Collaboration diagrams
– Package diagrams
– Component diagrams
– Deployment diagrams

• We will cover only a few
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6.4 Representing OO: An Example Using UML
UML in the OO Process (continued)

• How UML can be used in life cycle (note:
component/deployment diagrams in wrong place!)
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6.5 OO System Design
How do you find classes

• They will often be obvious as you learn about the
application domain
– What are the important concepts that need to be

tracked by the system?
• What are their attribues?
• What services do they provide?

• One (slightly useful) trick
– Look for nouns (objects) and verbs (methods) in the

documents provided by your users
– This gives you a candidate set of objects that can be

evolved into classes over time
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6.5 OO System Design
UML Diagram

• A UML box used to illustrate the component of a class
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6.5 OO System Design
UML Diagram to Describe Relationship

• Inheritance relationship (is-a relationship): lower box
inherits the attributes and behaviors of the upper box

Animal

location
food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()
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6.5 OO System Design
UML Diagram to Describe Relationship (continued)

• Each order is associated with salesperson (associated)
• The order item is part of the order (composition); the

order also has a customer (aggregation)
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6.5 OO System Design
UML Diagram to Describe Relationship (continued)

• Graphical representation of several other ways of
denoting relationships between classes

A B
One B with each A; one
A with each B

A B
11

Same as above

A B
*1 Zero or more Bs with each

A; one A with each B

A B
** Zero or more Bs with each

A; ditto As with each B

A B
2..51

A B
*

Two to Five Bs with each
A; one A with each B

Zero or more Bs with each
A; B knows nothing about A
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6.5 OO System Design
First Cut at Royal Service Station Design
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6.5 OO System Design
Second Cut at Royal Service Station Design
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6.5 OO System Design
Third and Final Cut at Royal Service Station Design
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6.5 OO System Design
Package Diagram

• View the system as a small collection of
packages, which can be expanded to a larger set
of classes
– Show dependencies among classes that belong to

different packages
• Two items are dependent if changes to the definition of

one may cause changes to the other
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6.5 OO System Design
Package Diagram for the Royal Service Station

• There are four major packages
• The service package consists of five key classes
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6.5 OO System Design
Interaction Diagram

• Describe how operations and behaviors are
handled by the objects in the design

• Two kinds of interaction diagrams
– Sequence diagram: shows the sequence in which

activities or behaviors occur
– Collaboration diagram: shows how the objects are

connected statically
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6.5 OO System Design
Sequence Diagram for the Royal Service Station

• Showing the use case of the refuel class
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6.5 OO System Design
Collaboration Diagram for the Royal Service Station

• Shows the parking use case
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6.5 OO System Design
State Diagram

• To document a dynamic model of the system
• Shows

– the possible states an object can take
– the events that trigger the transition from one state to the next
– the actions that result from each state change

• Needed only for classes where the objects exhibit
dynamic behavior, with many attribute values and
messages

• Note: state diagrams in textbook are horrible! (They don’t
show labels, use incorrect notation, and don’t make
sense!) Fortunately, we’ve seen examples of good state
diagrams in the concurrency textbook
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State Diagram Example: Whole System Granularity

• Example
from
UML
Reference
Manual by
“Three
Amigos”.
© 1999
Addison
Wesley

Purchasing

Idle

Identify

Selecting

Confirming

Selling

fail

insert card

push "cancel"

push "buy" push "resume"

push "confirm"

exit / eject card
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6.5 OO System Design
State Diagram for the Royal Service Station System

• State diagram for the inventory class, orders parts or fuel: a different
condition triggers each state
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6.5 OO System Design
Activity Diagram

• To model the flow of procedures or activities in a class
• A decision node is used to represent a choice of which

activity to invoke
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OO Design: How To

• Basic steps (note: different from text book)
– Step 1: Analyze/Create use cases
– Step 2: Create activity diagrams for each use case
– Step 3: Create class diagram based on 1
– Step 4: Create interaction diagrams for activities contained in

diagrams from step 2
– Step 5: Create state diagrams for classes created in step 3
– Step 6: Iterate; each step above will reveal information about the

other models that will need to be updated
• for instance, methods specified on objects in a sequence

diagram, have to be added to the class diagram
• classes in the class diagram, should appear in at least one

sequence diagram
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OO Design: How To (as a picture)

Use Cases

Class Diagram

Activity Diagrams

Ident i fy

Classes/Methods

Document

Structure Using

Interaction Diagrams

(Sequence/Collaboration)

Document Individual

Activities Using

State Diagrams

Document Interesting States/Behaviors Using

Identify Classes/Methods

Modify Use Case

With New Class


