
CSCI 5828: Foundations of
Software Engineering

Lecture 20, 21, and : Software Design
Slides created by Pfleeger and Atlee for the SE textbook

Some modifications to the original slides have been made by Ken
Anderson for clarity of presentation

03/20/2008 — 04/01/2008 — 04/08/2008

ISBN 0-13-146913-4
Prentice-Hall, 2006

Chapter 5

Designing
the System

Copyright 2006 Pearson/Prentice Hall. All rights reserved.

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.3
© 2006 Pearson/Prentice Hall

Contents

5.1 What Is Design?
5.2 Decomposition and Modularity
5.3 Architectural Styles and Strategies
5.4 Issues in Design Creation
5.5 Characteristic of Good Design
5.6Techniques for Improving Design
5.7Design Evaluation and Validation
5.8Documenting the Design
5.9Information System Example
5.10 Real Time Example
5.11 What this Chapter Means for you

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.4
© 2006 Pearson/Prentice Hall

Chapter 5 Objectives

• Conceptual design and technical design
• Design styles, techniques, and tools
• Characteristic of good design
• Validating designs
• Documenting the design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.5
© 2006 Pearson/Prentice Hall

5.1 What Is Design?

• Design is the creative process of transforming a
problem into a solution

• The description of a solution is also known as
“the design”
– The requirements specification defines a problem
– The design document specifies a particular solution to

that problem

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.6
© 2006 Pearson/Prentice Hall

5.1 What Is Design?

• Design is a two-part interactive process
– Conceptual design (system design)
– Technical design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.7
© 2006 Pearson/Prentice Hall

5.1 What Is Design?
Conceptual Design

• Tells the customer what the system will do
– Where will the data come from?
– What will happen to the data in the system?
– What will the system look like to users?
– What choices will be offered to users?
– What is the timing of events?
– What will the reports and screens look like?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.8
© 2006 Pearson/Prentice Hall

5.1 What Is Design?
Conceptual Design (continued)

• Characteristics of good conceptual design
– in customer’s language
– no technical jargon
– describes system functions
– independent of implementation
– linked to requirements

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.9
© 2006 Pearson/Prentice Hall

5.1 What Is Design?
Conceptual Design (continued)

• Graphical representation of the differences in
design documentation

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.10
© 2006 Pearson/Prentice Hall

5.1 What Is Design?
Technical Design

• Tells the programmers what the system will do
– major hardware components and their function
– hierarchy and functions of software components
– data structures
– data flow

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.11
© 2006 Pearson/Prentice Hall

5.2 Decomposition and Modularity
Five Ways to Create Designs

• Modular decomposition
• Data-oriented decomposition
• Event-oriented decomposition
• Outside-in design
• Object-oriented design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.12
© 2006 Pearson/Prentice Hall

5.2 Decomposition and Modularity
Levels of Decomposition

• System data description
• High level functional descriptions
• Creating a hierarchy of information with increasing details

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.13
© 2006 Pearson/Prentice Hall

5.2 Decomposition and Modularity
Modularity

• Modules or components: composite parts of
design

• A system is modular when
– each activity of the system is performed by exactly one

component
– inputs and outputs of each component are well-defined

• all inputs to it are essential to its function
• all outputs are produced by one of its actions

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.14
© 2006 Pearson/Prentice Hall

5.2 Decomposition and Modularity

• Graphical representation of the NIST/ECMA model for environment
integration

– a software architect uses a high level design to explain general
characteristics without detail

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.15
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Three Design Levels

• Architecture: associates system components
with capabilities

• Code design: specifies algorithms and data
structures for each component

• Executable design: lowest level of design,
including memory allocation, data formats, bit
patterns

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.16
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Design Styles

• Pipes and filters
• Object-oriented design
• Implicit invocation
• Layering
• Repositories
• Interpreters
• Process control
• Client-server

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.17
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Pipes and Filters

• The system has
– Streams of data (pipe) for input and output
– Transformation of the data (filter)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.18
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Pipes and Filters (continued)

• Several important properties
– The designer can understand the entire system's effect

on input and output as the composition of the filters
– The filters can be reused easily on other systems
– System evolution is simple
– Allow concurrent execution of filters

• Drawbacks
– Encourages batch processing
– Not good for handling interactive application
– Duplication in filters’ functions

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.19
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Object-Oriented Design

• Must have two characteristics
– the object must preserve the integrity of data

representation
– the data representaion must be hidden from other

objects
• easy to change the implementation without perturbing

the rest of the system

• One object must know the identity of other objects
in order to interact

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.20
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Implicit Invocation

• Event-driven, based on notation of broadcasting
• Data exchange is through shared data in a repository
• Applications

– packet-switch networks
– databases to ensure consistency
– user interfaces

• Useful for reusing design components from other
system

• Disadvantage: lack of assurance that a component
will respond to an event

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.21
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Layering

• Layers are hierarchical
– Each layer provides service to the one outside it and acts as

a client to the layer inside it
• The design includes protocols

– Explain how each pair of layers will interact
• Advantages

– High levels of abstraction
– Relatively easy to add and modify a layer

• Disadvantages
– Not always easy to structure system layers
– System performance may suffer from the extra coordination

among layers

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.22
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Example of Layering System

• A system to provide file security

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.23
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Repositories

• Two components
– A central data store
– A collection of components that operate on it to store,

retrieve, and update information
• The challenge is deciding how the components

will interact
– A traditional database: transactions trigger process

execution
– A blackboard: the central store controls the triggering

process

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.24
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Repositories (continued)

• Major advantage: openness
– Data representation is made available to various programmers (vendors)

so they can build tools to access the repository
– But also a disadvantage: the data format must be acceptable to all

components

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.25
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Interpreters

• A virtual machine that “interprets” pseudocode in
a way that makes it executable
– Used not only to convert programming language, but

also to convert any kind of encoding to a more explicit
form

• Composed of four components
– A memory to contain pseudocode to be interpreted
– An interpretation engine
– The current state of the interpretation engine
– The current state of the program being simulated

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.26
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Example of an Interpreter

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.27
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Process Control

• Characterized by
– the type of component
– the relationships that hold among components

• Purpose: maintain specified properties of process
outputs at or near specified reference values called
set points

• Issues in designing a process control system
– What variables to monitor
– What sensor to use
– How to calibrate them
– How to deal with the timing of sensing and control

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.28
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Process Control (continued)

• Software-based control system involves a closed
loop in one of two forms, feedback and
feedforward as illustrated in the picture

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.29
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Other Styles

• Distributed system architecture: client-server
– Advantage

• Users get information they need only when they need it
– Disadvantage

• Need more sophisticated security, system management,
and application development

• Domain-specific architecture
– Take advantage of the commonalities afforded by the

application domain (e.g., avionics)
• Heterogeneous architectures

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.30
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Client-Server

• Distributed systems usually described in terms of the
topology of their configuration.

• They can be organized as a ring or as a star as shown in
the picture

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.31
© 2006 Pearson/Prentice Hall

5.3 Architectural Styles and Strategies
Sidebar 5.1 The World Cup Client-Server System

• Required both central control and distributed
functions

• The system built included a central database for
ticket management, security, news service, and
Internet link

• The server also calculated games statistics,
provided historical information, security
photographs, and clips of video action

• The clients ran on 1600 Sun workstations

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.32
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation

• Modularity and levels of abstraction
• Collaborative design
• Designing the user interface
• Concurrency
• Design patterns and reuse

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.33
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation
Modularity and Levels of Abstraction

• Levels of abstraction: the component at one
level refines those in the level above, as we
move to lower levels, we find more detail about
each component

• Information hiding: hide design decisions from
others

• Modularity provides the flexibility
– to understand the system
– to trace the flow of data and function
– to target the pockets of complexity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.34
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation
Sidebar 5.2 Using Abstraction

DO WHILE I is between 1 and (length of L)-1:
 Set LOW to index of smallest value in L(I), ..., L(length of L)

 Interchange L(I) and L(LOW)
END DO

DO WHILE I is between 1 and (length of L) - 1
 Set LOW to current value of I
 DO WHILE J is between I+1 and (length of L) - 1:
 IF L(LOW) is greater than L(J)
 THEN set LOW to current value of J
 ENDIF
 ENDDO
 Set TEMP to L(LOW)
 S et L(LOW) to L(I)
 Set L(I) to TEMP
ENDDO

Rearrange L in non-decreasing order

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.35
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation
Collaborative Design

• Most projects are collaborative work
• Issues in collaborative design

– Who is the best suited to design each aspect of the
system

– How to document the design
– How to coordinate the design components

• Problems in performing collaborative design
– Differences in personal experience, understanding,

and preference
– People sometimes behave differently in groups from

the way they would behave individually

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.36
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation
Collaborative Design: Multi Sites Development

• Four stages
– A project is performed at a single site with on-site developers

from foreign country
– On-site analysts determine the system's requirements. Then the

requirements are provided to off-site's designers and developers
groups

– Off-site developers build generic products and components that
are used worlwide

– Off-site developers build products that take advantage of their
individual expertise

• Issues
– Languages
– Communication paths

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.37
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation
Sidebar 5.3 The Causes of Design Breakdown

• Lack of specialized design schemas
• Lack of a meta-schema about the design process leading to poor

allocation of resources to the various design activities
• Poor prioritization of issues leading to poor selection of alternative

solutions
• Difficulty in considering all the stated or inferred constraints in

defining a solution
• Difficulty in performing mental simulation with steps or test cases
• Difficulty in keeping track and returning to subproblems whose

solution has been postponed
• Difficulty in expanding or merging solutions from individual

subproblems to form a complete solution

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.38
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation
Designing the User Interface

• Key elements to be addressed
– Metaphors
– A mental model
– The navigation rules for the model
– Look: characteristics of the system that convey

information to the user
– Feel: interaction techniques

• Key issues to be considered
– Cultural issues
– User preferences

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.39
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation
Guidelines for Determining User-Interface Characteristics

• Consider design choices in terms of a design space
• Each trade-off reflects at least two dimensions of the

choice
• We can view the choices as

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.40
© 2006 Pearson/Prentice Hall

Functional dimensions Structural dimensions

External event handling:

• No external events

• Process events while waiting for input

• External events preempt user commands

Application interface abstraction level

• Monolithic program

• Abstract device

• Toolkit

• Intera ction manager with fixed data types

• Interaction manager with extensible data

types

• Extensible interaction manager

User customizability

• High

• Medium

• Low

Abstract device variability

• Ideal device

• Parameterized device

• Device with variable operations

• Ad hoc dev ice

User interface adaptability across devices

• None

• Local behavior changes

• Global behavior change

• Application semantics change

Notation for user interface definition

• Implicit in shared user interface code

• Implicit in application code

• External declarative notation

• External procedural notation

• Internal declarative notation

• Internal procedural notation

Computer system organization

• Uniprocessing

• Multiprocessing

• Distributed processing

Basis of communication

• Events

• Pure state

• State with hints

• State plus events

Basic interface class

• Menu selection

• Form filling

• Command language

• Natural language

• Direct manipulation

Control thread mechanisms

• None

• Standard processes

• Lightweight processes

• Non -preemptive processes

• Event handlers

• Interrupt service routines

Application portability across user interface

styles

• High

• Medium

• Low

5.4 Issues in Design Creation
Issues to Consider in Trade-off Analysis

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.41
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation
Concurrency

• Problems
– Consistency of data shared among components that

execute at the same time
– Ensuring that one action does not interfere with another

• Solutions
– Synchronization: method for allowing two activities to take

place concurrently without interfering with one another
– Mutual exclusion: one process accessing a data element,

no other process can affect the element
– Monitor: an abstract object that controls the mutual

exlusion of a particular process

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.42
© 2006 Pearson/Prentice Hall

5.4 Issues in Design Creation
Design Patterns and Reuse

• A design pattern names, abstracts, and identifies
the key aspects of a common design structure
that make it useful for creating reusable design

• Key aspects
– participating classes and instances
– roles and collaborations
– the distribution of responsibilities

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.43
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design

• Component independence
– coupling
– cohesion

• Exception identification and handling
• Fault prevention and tolerance

– active
– passive

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.44
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Coupling

• Highly coupled when there is a great deal of dependencies
• Loosely coupled components have some dependency, but the

interconnections among components are weak
• Uncoupled components have no interconnections at all

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.45
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Coupling (continued)

• Coupling among components depends on
– the references made
– the amount of data passed
– the amount of control
– the degree of complexity in the interface

• We can measure coupling along a range of dependence

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.46
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Coupling: Types of Coupling

• Content coupling
• Common coupling
• Control coupling
• Stamp coupling
• Data coupling

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.47
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Content Coupling

• Occurs when one component modifies an internal data
item in another component, or when one component
branches into the middle of another component

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.48
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Common Coupling

• Making a change to the common data means tracing back
to all components that access those data to evaluate the
effect of the change

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.49
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Cohesion

• A component is cohesive if all elements of the component are
directed toward and essential for performing the same task

• Several forms of cohesion

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.50
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Example of Cohesion

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.51
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Exception Indentification and Handling

• Exceptions: situations that we know are counter
to what we really want the system to do
– failure to provide a service
– providing the wrong service or data
– corrupting data

• Exceptions can be handled in one of three ways
– retry
– correct
– report

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.52
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Sidebar 5.4 Control Issues
• System 1 and 2 are two possible designs for the same system

– Fan-in is the number of components controlling particular design
– fan-out is number or components controlled by a component

• Better design when it has low fan out

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.53
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Fault Prevention and Tolerance

• Active fault detection: periodically check for
symptoms of faults, or try to anticipate when
failure will occur

• Passive fault detection: wait until a failure
occurs during execution

• Fault correction: the system's compensation
for a fault's presence

• Fault tolerance: the isolation of damage
caused by a fault

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.54
© 2006 Pearson/Prentice Hall

5.5 Characteristics of Good Design
Sidebar 5.5 The Need for Safe Design

• From 1986 to 1997 there were over 450 reports filed with U.S
Food and Drug Administration, detailing software defects in
medical devices, 24 of which led to death or injury

• Leveson and Turner describe in great detail the user-interface
design probem that led to at least three deaths and several
injuries from a malfunctioning radiation therapy machine

• June 1997, new federal regulations authorized the FDA to
examine the software design of medical devices

• Software designers must see directly how their products will be
used, rather than rely on salespeople and marketers

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.55
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design

• Reducing complexity
• Design by contract
• Prototyping design
• Fault-tree analysis

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.56
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Reducing Complexity

• Look for ways to reduce the complexity of
diagrams
– e.g. reduce “crossovers”
– even better: simplify the diagram by finding structure

that are not “pulling their own weight”
• reassign their responsibilities and eliminate

• “It seems that perfection is reached not when
there is nothing left to add, but when there is
nothing left to take away.” — Antoine de Saint-
Exupéry, Terre des hommes, 1939

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.57
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Design by Contract

• Suggested by Meyer to ensure that a design
meets its specifications (contracts)

• Meyer applies the notion of contract to software
– A client: a software component
– Supplier: perform subtask requested by a client
– Precondition: mutual obligation
– Postcondition: benefits
– Invariant: consistency constraint
– Assertions: contract properties

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.58
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Example of Design by Contract

• Suppose the client component has a table where each
element is identified by a character string used as a key

• Supplier's component's task is to insert an element from the
table to the dictionary.

• The formalized contract in the object oriented language
put (x: ELEMENT; key: STRING) is
-- insert x so that it will be retrievable through key.
require
count <= capacity;
not key.empty
do
… Some insertion algorithm…
ensure
has (x);
item (key) = (x);
count = old count + 1
end

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.59
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Example of Design by Contract

• Meyer’s implementation of Design by Contract is
“heavyweight”
– preconditions, postconditions, and invariants in Eiffel are part of

the syntax
• required for each method you create!

• A lightweight approach is to use your programming
languages assertion mechanism
– Typically as simple as

• assert (boolean condition)
• If the condition is false, an exception is thrown

– An assertion at the start of method is a pre-condition, and
assertion at the end is a post-condition

• Class invariants are harder to achieve with this method

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.60
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Prototyping Design

• Same advantages provided during design stage
• A feasibility prototype can explore whether the

proposed solution will actually solve the problem
– Such prototypes are often “throwaways”

• But not always, sometime parts of a prototype
can be saved to be used in the actual system
– In this situation, since you have a design in hand, the

prototype can be built to match the design and then
“evolved” into the production system

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.61
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Fault-tree Analysis: Steps

• Identifying possible failures
• Building a graph

– Nodes are failures, either of single components,
system functions, or the entire system

– Edges indicate the relationships among nodes
• Searching for several types of design weakness

– single point of failure
– uncertainty
– ambiguity
– missing components

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.62
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Guidewords for Identifying Possible Failures

Guideword Interpretation

no
more
less
part of
other than
early
late
before
after

No data or control signal was sent or received
The volume of data is too much or too fast
The volume of data is too low or too slow
The data or control signal is incomplete
The data or control signal has another component
The signal arrives too early for the clock
The signal arrives too late for the clock
The signal arrives too early in the expected sequence
The signal arrives too late in the expected sequence

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.63
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Fault-tree Analysis: An Example

• Portion of power plant control system
• From this fault tree we can construct another tree, known as a

cut-set tree

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.64
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Fault-tree Analysis: Example (continued)

• Cut-set tree generated from the fault tree of a portion of the
power plant control system

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.65
© 2006 Pearson/Prentice Hall

5.6 Techniques for Improving Design
Fault-tree Analysis: Example (continued)

• The leaf-nodes in the cut-set identify events that
can lead to the failure of the system
– We then examine the design, assume a failure has

occurred and see if we can find a set of events that will
produce it;

– Note: this is different from the original fault tree, which
is constructed by asking how a failure can occur, not
whether the current design will cause that failure

– If we conclude that the failure can occur with the
present design, then we have to work to remove and/or
mitigate the identified fault

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.66
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation

• Mathematical validation
• Measuring design quality
• Comparing designs

– one specification, many designs
– comparison table

• Design reviews

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.67
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Mathematical Validation

• Break the system into a set of processes
– A set of inputs
– A set of expected outputs
– A set of assertions about the process

• For each process, we demonstrate
– If the set of inputs is formulated correctly, it is

transformed properly into the set of expected output
– The process terminates without failure

• This procedure “proves” that the design is
correct

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.68
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Measuring Design Quality

• Proposed measurements to assess certain key
aspects of design quality
– Measures of cohesion for OO design Measures high-

level design, including cohesion and coupling
• Complexity involves two aspects

– Complexity within each component
– The complexity of the relationships among the

components

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.69
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Card and Glass's Measure of Complexity

• C = S + D
• where

– S = (1/n) Σ f 2(i)
– D = V (i)/[f (i) + 1]

• S = the structural complexity (between comps)
• D = the data complexity (within components)
• f (i) = the fan-out of component i
• V (i) = the number of input and output variables in

component i
• n = the number of components

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.70
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
System's Complexity vs. Number of Faults

• Fault rate graphed against system design complexity
– Each increase of one unit of complexity increased the fault rate by

0.4 faults per thousand lines of code

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.71
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Comparing Designs

• One specification, many designs: to see how
different designs can be used to solve the same
problem

• Example
– Shaw and Garland present four different architectural

designs to implement KWIC (key word in context)
• shared data
• abstract data type
• implicit invocation
• pipe and filter

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.72
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Shared Data Solution for KWIC

• The problem is broken into its four functional parts: input,
circular shift, alphabetize, and output

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.73
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Abstract Data Type Solution for KWIC

• Data is no longer centrally stored and shared, but the
decomposition process is the same

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.74
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Implicit Invocation Solution for KWIC

• Another shared data solution, but the interface to the data
is very different

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.75
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Pipe-and-Filter Solution for KWIC

• The sequence of processing is controlled by the sequence
of filters

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.76
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Shaw and Garland’s Comparison

Attribute Shared

data

Abstract

data type

Implicit

invocation

Pipe and filter

Easy to change algorithm - - + +

Easy to change data representation - + - -
Easy to change function + - + +

Good performance + + - -

Easy to reuse - + - +

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.77
© 2006 Pearson/Prentice Hall

Attribute Priority Shared

data

Abstract data

type

Implicit

invocation

Pipe and filter

Easy to

change

algorithm

1 1 2 4 5

Easy to
change data

representation

4 1 5 2 1

Easy to

change

function

3 4 1 4 5

Good
performance

3 5 4 2 2

Easy to reuse 5 1 4 2 5

5.7 Design Evaluation and Validation
Comparison Tables (continued)

• Weighted comparison of Shaw and Garland
design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.78
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Comparison Tables (continued)

• With the previous table, we can then assign a
weighted score to each design
– Sum(priority(i) x design(i)) where i represents ith att
– Shared Data design is
– 1x1 + 4x1 + 3x4 + 3x5 + 5x1 = 37

• You compute a value for each design and choose
the design with the highest value
– This is a subjective technique, since attributes,

priorities, and design values are all assigned by a
project’s managers/designers

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.79
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Design Reviews

• Preliminary design review
– examines conceptual design with customer and users

• Critical design review
– presents technical design to developers

• Program design review
– programmers get feedback on their designs before

implementation

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.80
© 2006 Pearson/Prentice Hall

5.7 Design Evaluation and Validation
Questions for any Design Review

• Is it a solution to the problem?
• Is it modular, well-structured, and easy to understand?
• Can we improve the structure and understandability?
• Is it portable to other platforms?
• Is it reusable?
• Is it easy to modify or expand?
• Does it support ease of testing?
• Does it maximize performance, where appropriate?
• Does it reuse components from other projects, where appropriate?
• Are the algorithms appropriate, or can they be improved?
• If this system is to have a phased development, are the phases interfaced sufficiently

so that there is an easy transition from one phase to the next?
• Is it well-documented, including design choices and rationale?
• Does it cross-reference the components and data with the requirements?
• Does it use appropriate techniques for handling faults and preventing failures?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.81
© 2006 Pearson/Prentice Hall

5.8 Documenting the Design
Document Contains

• Design rationale
– Outlining the critical issues and trade-offs

• especially with respect to non-functional issues

• Descriptions of the system’s component
• A section that addresses how the user interacts with

the system
• A set of diagrams or formal notations that describes

the overall organization and structure of the system
• If our system is distributed, then we also include a

topology of the system’s network

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.82
© 2006 Pearson/Prentice Hall

5.8 Documenting the Design
Section for How Users Interact with the System

• menus and other display-screen formats
• human interfaces: function keys, touch screen

descriptions, keyboard layouts, use of a mouse or joystick
• report formats
• input: where data come from, how they are formatted, on

what media they are stored
• output: where data are sent, how they are formatted, on

what media they are stored
• general functional characteristics
• performance constraints
• archival procedures
• fault-handling approach

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.83
© 2006 Pearson/Prentice Hall

5.9 Information System Example
Picadilly System

• Using a combination of techniques for
documenting the design

• A system for tracking opposition schedule: data
flow and the data model

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.84
© 2006 Pearson/Prentice Hall

5.9 Information System Example
Picadilly System Data Dictionary

Opposition schedule = * Data flow *
 Television company name
 + {Opposition transmission date
 + Opposition transmission time + Opposition program name
 + (Opposition predicted rating)}

Input: Opposition schedule
For each Television company name , create Opposition company .
 For each Opposition schedule ,
 Locate the Episode where Episode schedule date =
Opposition transmission date AND Episode
start time = Opposition transmission
time
 Create instance of Opposition program
 Create the relationships Planning and Competing
Output: List of Opposition programs

© 2008, University of Colorado

Ariane 5 Disaster
 On June 4, 1996, after 7 billion dollars of development, an unmanned

Ariane 5 rocket exploded just forty seconds after lift-off
 The rocket and its cargo were valued at $500 million for a total cost of 7.5

billion dollars!
 The error was traced to a software component in the Inertial Reference

System that had been reused from the Ariane 4 flight software
 The reused component was more than 10 years old and had flown

successfully on numerous Ariane 4 flights
 The problem => certain assumptions changed between the Ariane 4 and the

Ariane 5 and the software was not updated in response

© 2008, University of Colorado

Ariane 5, background info
 The flight software was written in Ada

which has a first class exception
construct
 (it predates C++ and Java in this regard)

 If an exception is thrown but not caught,
the error will “percolate” up through the
call stack and will eventually terminate
the entire system

© 2008, University of Colorado

Ariane 5, the details
 The failure of the Ariane 5 can be traced to the

conversion of a 64-bit integer to a 16-bit signed
integer
 The 64-bit value was greater than 215 which caused an

exception to be generated
 This exception was not caught and it caused the termination

of the flight control software 37 seconds into the launch
 The rocket shortly thereafter (3 seconds) lost control and

was destroyed

© 2008, University of Colorado

More information
 Jean-Marc Jézéquel and Bertrand Meyer wrote a paper that

traces the problem to an inappropriate reuse of a 10-year old
software component
 They reveal that one “vexing” aspect of this disaster is that the error

occurred in a software system that was not needed during launch!
 The calculation was supposed to be stopped 9 seconds before

launch, but the inertial reference system had been reset during
a hold in the countdown and its initialization sequence
proceeded during launch.

 This is what caused the rocket to veer off course… the
initialization sequence was sending random sequences of
1s and 0s to the flight control software, which was
interpreting them as commands to fire various sets of
booster jets in completely random patterns!

© 2008, University of Colorado

Details, continued
 Their paper reveals that sufficient software dev. processes were

in place and the system that caused the error had even been reviewed
extensively before launch

 exception handlers had been placed around 4 of 7 variables;
unfortunately, the data conversion error occurred in one of the
3 unprotected variables

 why leave 3 variables unprotected? Performance! If you add
exception handling code, you slow the performance of the
system

 plus, the developers had an analysis that showed that overflow
could not occur with the 3 unprotected variables

 so they had good reason to leave them unprotected

© 2008, University of Colorado

Details, continued
 The problem?

 The overflow analysis was conducted for
the Ariane 4, not the Ariane 5

 Its prediction that overflow could not occur for
the three unprotected variables was no longer
valid!

 So, it was a reuse error!

© 2008, University of Colorado

Ariane 5, summary
 The authors conclude that “Design by Contract” was needed in

this situation
 In particular, the component needed to specify a “contract” with its

users; one aspect of this contract is specifying the legal input
values

 If the component had done something similar to an assert construct
like this

 proc foo(actual_value: int)
 assert(actual_value <= maximum_value)

 The authors argue that the error may well have been detected
during system test; they further argue that such “contracts” should
be a first-class, required programming language construct; not an
optional construct that few use

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.92
© 2006 Pearson/Prentice Hall

5.10 Real System example
Ariane-5 Failure

• Jesequel and Meyer suggest that design by contract might
have caught the Ariane-5

– There was no precise specification for the component reuse from Ariane-
4

• The code did not check the condition to check the variable
representing horizontal bias that fit in 16 bits

• Had this condition been made explicit, it might have looked like

convert (horizontal_bias : DOUBLE): INTEGER is
require
 horizontal_bias <= Maximum_bias
 do
 ……
ensure
 ……

end

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 5.93
© 2006 Pearson/Prentice Hall

5.11 What This Chapter Means for you

• Looked at what it means to design a system
• Design begins at a high level, with important decisions

about system architecture based on
– system requirements
– desirable attributes
– the long-term intended use of the system

• Need to keep in mind the several characteristics as we
build a design
– Modularity and level of abstraction
– Coupling and cohesion
– Fault tolerance, prototyping and user interface

