
CSCI 5828: Foundations of
Software Engineering

Lecture 11 and 12: Requirements
Slides created by Pfleeger and Atlee for the SE textbook

Some modifications to the original slides have been made by Ken
Anderson for clarity of presentation

02/19/2008 — 02/21/2008

ISBN 0-13-146913-4
Prentice-Hall, 2006

Chapter 4

Capturing
the Requirements

Copyright 2006 Pearson/Prentice Hall. All rights reserved.

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.3
© 2006 Pearson/Prentice Hall

Contents

4.1 The Requirements Process
4.2 Requirements Elicitation
4.3 Types of Requirements
4.4 Characteristics of Requirements
4.5 Modeling Notations
4.6 Requirements and Specification Languages
4.7 Prototyping Requirements
4.8 Requirements Documentation
4.9 Validation and Verification
4.10 Measuring Requirements
4.11 Choosing a Specification Technique
4.12 Information System Example
4.13 Real Time Example

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.4
© 2006 Pearson/Prentice Hall

Chapter 4 Objectives

• Eliciting requirements from the customers
• Modeling requirements
• Reviewing requirements to ensure their quality
• Documenting requirements for use by the design

and test teams

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.5
© 2006 Pearson/Prentice Hall

4.1 The Requirements Process

• A requirement is an expression of desired
behavior

• A requirement deals with
– objects or entities
– the state they can be in
– functions that are performed to change states or object

characteristics
• Requirements focus on the customer needs, not

on the solution or implementation
– designate what behavior, without saying how that

behavior will be realized

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.6
© 2006 Pearson/Prentice Hall

4.1 The Requirements Process
Sidebar 4.1 Why Are Requirements Important?

• Top factors that caused project to fail
– Incomplete requirements
– Lack of user involvement
– Unrealistic expectations
– Lack of executive support
– Changing requirements and specifications
– Lack of planning
– System no longer needed

• Some part of the requirements process is involved in
almost all of these causes

• Errors in Requirements can be expensive if not detected
early

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.7
© 2006 Pearson/Prentice Hall

4.1 The Requirements Process
Process for Capturing Requirements

• Performed by the req. analyst or system analyst
• The final outcome is a Software Requirements

Specification (SRS) document

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.8
© 2006 Pearson/Prentice Hall

4.1 The Requirements Process
Sidebar 4.2 Agile Requirements Modeling

• If requirements are tightly coupled and complex, we may
be better off with a “heavy” process that empasizes up-
front modeling

• If the requirements are uncertain, agile methods are an
alternative approach

• Agile methods gather and implement the requirements in
increments

• Extreme Programming (XP) is an agile process
– The requirements are defined as we build the system
– No planning or designing for possible future requirements
– Encodes the requirements as test cases that the eventual

implementation must pass

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.9
© 2006 Pearson/Prentice Hall

4.2 Requirements Elicitation

• Customers do not always understand what their
needs and problems are

• It is important to discuss the requirements with
everyone who has a stake in the system

• We are working to come up with an agreement on
what the requirements are
– If we can not agree on what the requirements are, then

the project is doomed to fail

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.10
© 2006 Pearson/Prentice Hall

4.2 Requirements Elicitation
Stakeholders

• Clients: pay for the software to be developed
• Customers: buy the software after it is developed
• Users: use the system
• Domain experts: familiar with the problem that the

software must automate
• Market Researchers: conduct surveys to determine

future trends and potential customers
• Lawyers or auditors: familiar with government, safety, or

legal requirements
• Software engineers or other technology experts

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.11
© 2006 Pearson/Prentice Hall

4.2 Requirements Elicitation
Means of Eliciting Requirements

• Interviewing stakeholders
• Reviewing available documentations
• Observing the current system (if one exists)
• Apprenticing with users to learn about user's task

in more details
• Interviewing users or stakeholders in groups
• Using domain specific strategies, such as Joint

Application Design, or PIECES
• Brainstorming with current and potential users

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.12
© 2006 Pearson/Prentice Hall

4.3 Types of Requirements

• Functional requirement: describes required
behavior in terms of required activities

• Quality requirement or nonfunctional
requirement: describes some quality
characteristic that the software must possess

• Design constraint: a design decision such as
choice of platform or interface components

• Process constraint: a restriction on the
techniques or resources that can be used to build
the system

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.13
© 2006 Pearson/Prentice Hall

4.3 Types of Requirements
Sidebar 4.4 Making Requirements Testable

• “Fit criteria” form objective standards for judging
whether a proposed solution satisfies the
requirements
– It is easy to set fit criteria for quantifiable requirements
– It is hard for subjective quality requirements

• Three ways to help make requirements testable
– Specify a quantitative description for each adverb and

adjective
– Replace pronouns with specific names of entities
– Make sure that every noun is defined in exactly one place in

the requirements documents

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.14
© 2006 Pearson/Prentice Hall

4.3 Types of Requirements
Resolving Conflicts

• Different stakeholders have different sets of
requirements
– with potentially conflicting ideas

• Need to prioritize requirements
• Prioritization might separate requirements into

three categories
– essential: absolutely must be met
– desirable: highly desirable but not necessary
– optional: possible but could be eliminated

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.15
© 2006 Pearson/Prentice Hall

4.3 Types of Requirements
Two Kinds of Requirements Documents

• Requirements definition: a complete listing of
everything the customer wants to achieve
– Describing the entities in the environment where the

system will be installed
• Requirements specification: restates the

requirements as a specification of how the
proposed system shall behave

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.16
© 2006 Pearson/Prentice Hall

4.3 Types of Requirements
Two Kinds of Requirements Documents (continued)

• Requirements defined anywhere within the environment's
domain, including the system's interface

• Specification restricted only to the intersection between
environment and system domain

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.17
© 2006 Pearson/Prentice Hall

4.4 Characteristics of Requirements

• Correct
• Consistent
• Unambigious
• Complete
• Feasible
• Relevant
• Testable
• Traceable

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.18
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations

• It is important to have standard notations for
modeling, documenting, and communicating
decisions

• Modeling helps us to understand requirements
thoroughly
– Holes in the models reveal unknown or ambiguous

behavior
– Multiple, conflicting outputs to the same input reveal

inconsistencies in the requirements

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.19
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Entity-Relationship Diagrams

• A popular graphical notational paradigm for
representing conceptual models

• Has three core constructs
– An entity: depicted as a rectangle, represents a

collection of real-world objects that have common
properties and behaviors

– A relationship: depicted as an edge between two
entities, with diamond in the middle of the edge
specifying the type of relationship

– An attribute: an annotation on an entity that describes
data or properties associated with the entity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.20
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Entity-Relationship Diagrams (continued)

• Entity diagram of turnstile problem

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.21
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Entity-Relationship Diagrams (continued)

• ER diagrams are popular because
– they provide an overview of the problem to be

addressed
– the view is relatively stable when changes are made to

the problem's requirements
• ER diagram is likely to be used to model a

problem early in the requirements process

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.22
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
ER Diagrams Example: UML Class Diagram

• UML (Unified Modeling Language) is a
collection of notations used to document software
specifications and designs

• It represents a system in terms of
– objects: akin to entities, organized in classes that have

an inheritance hierarchy
– methods: actions on the object's variables

• The class diagram is the flagship model in any
UML specification
– A sophisticated ER diagram relating the classes

(entities) in the specification

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.23
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
UML Class Diagram of Library Problem

∗ ∗

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.24
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Event Traces

• A graphical description of a sequence of events that
are exchanged between real-world entities
– Vertical line: the timeline of distinct entity, whose name

appears at the top of the line
– Horizontal line: an event or interaction between the two

entities bounding the line
– Time progresses from top to bottom

• Each graph depicts a single trace, representing one
of several possible behaviors

• Traces have semantics that are relatively precise,
simple and easy to understand

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.25
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Event Traces (continued)

• Graphical representation of two traces for the
turnstile problem
– trace on the left represents typical behavior
– trace on the right shows exceptional behavior

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.26
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Event Traces Example: Message Sequence Chart

• An enhanced event-trace notation, with facilities
for creating and destroying entities, specifiying
actions and timers, and composing traces
– Vertical line represents a participating entity
– A message is depicted as an arrow from the sending

entity to the receiving entity
– Actions are specified as labeled rectangles positioned

on an entity's execution line
– Conditions are important states in an entity's evolution,

represented as labeled hexagon

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.27
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Message Sequence Chart (continued)

• Message sequence chart for library loan transaction

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.28
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
State Machines

• A graphical description of all dialog between the
system and its environment
– Node (state) represents a stable set of conditions that

exists between event occurences
– Edge (transition) represents a change in behavior or

condition due to the occurrence of an event
• Useful both for specifying dynamic behavior and

for describing how behavior should change in
response to the history of events that have
already occurred

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.29
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
State Machines (continued)

• Finite state machine model of the turnstile
problem

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.30
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
State Machines Example: UML Statechart Diagrams

• A UML statechart diagram depicts the dynamic
behavior of the objects in a UML class
– UML class diagram has no information about how the

entities behave, how the behaviors change
• A UML model is a collection of concurrently

executing statecharts
• UML statechart diagram has a rich syntax,

including state hierarchy, concurrency, and
intermachine communication

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.31
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
UML Statechart Diagrams (continued)

• State hierarchy is used to unclutter diagrams by
collecting into superstate those states with
common transitions

• A superstate can actually comprise multiple
concurrent submachines, separated by dashed
lines
– The submachines are said to operate concurrently

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.32
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
UML Statechart Diagrams (continued)

• The UML statechart diagram for the Publication
class from the Library class model

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.33
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
UML Statechart Diagrams (continued)

• An equivalent statechart for Publication class that does not make
use of state hierarchy or concurrency

– comparatively messy and and repetitive

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.34
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
UML Statechart Diagrams (continued)

• The UML statechart diagram for Loan association class illustrates how states
can be annotated with local variables, actions and activities

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.35
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
State Machines: Ways of Thinking about State

• Equivalence classes of possible future behavior
• Periods of time between consecutive event
• Named control points in an object's evolution
• Partition of an object's behavior

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.36
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
State Machines Example: Petri Nets

• A form or state-transition notation that is used to
model concurrent activities and their interaction
– Circles (places) represent activities or conditions
– Bars represents transitions
– Arcs connect a transition with its input places and its

output places
– The places are populated with tokens, which act as

enabling conditions for the transitions
– Each arc can be assigned a weight that specifies how

many tokens are removed from arc's input place, when
the transition fires

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.37
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Petri Nets (continued)

• Petri net of book loan

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.38
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Petri Nets (continued)

• A high level Petri net specification for the library problem

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.39
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Data-Flow Diagrams

• ER diagram, event trace, state machines depict
only lower-level behaviors

• A data-flow diagram (DFD) models functionality
and the flow of data from one function to another
– A bubble represents a process
– An arrow represents data flow
– A data store: a formal repository or database of

information
– Rectangles represent actors: entities that provide input

data or receive the output result

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.40
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Data-Flow Diagrams (continued)

• A high-level data-flow diagram for the library problem

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.41
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Data-Flow Diagrams (continued)

• Advantage:
– Provides an intuitive model of a proposed system's

high-level functionality and of the data dependencies
among various processes

• Disadvantage:
– Can be aggravatingly ambiguous to a software

developer who is less familiar with the problem being
modeled

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.42
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Data-Flow Diagrams Example: Use Cases

• Components
– A large box: system boundary
– Stick figures outside the box: actors, both human and

systems
– Each oval inside the box: a use case that represents

some major required functionality and its variant
– A line between an actor and use case: the actor

participates in the use case
• Use cases do not model all the tasks, instead they

are used to specify user views of essential system
behavior

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.43
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Use Cases (continued)

• Library use cases including borrowing a book, returning a
borrowed book, and paying a library fine

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.44
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Functions and Relations

• Formal methods or approach: mathematically
based specification and design techniques

• Formal methods model requirements or software
behavior as a collection of mathematical
functions or relations
– Functions specify the state of the system's execution,

and output
– A relation is used whenever an input value maps more

than one ouput value
• Functional method is consistent and complete

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.45
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Functions and Relations (continued)

• Example: representing turnstile problem using two
functions
– One function to keep track of the state
– One function to specify the turnstile output

 unlocked s=loc ked AND e=coin

 NetState(s,e) = r otating s=unl ocked AND e=push

 l ocked (s=rotating AND e=rotated)
 OR (s=locked AND e=slug)

 buzz s=locked AND e=slug
Output(s,e) =
 <none> Otherwise

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.46
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Functions and Relations Example: Decision Tables

• It is a tabular representation of a functional
specification that maps events and conditions to
appropriate responses or action

• The specification is informal because the inputs
(events and conditions) and outputs (actions) may
be expressed in natural language

• If there is n input conditions, there are 2n possible
combinations of input conditions

• Combinations map to the same set of results and
can be combined into a single column

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.47
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Decision Tables (continued)

• Decision table for library functions borrow,
return, reserve, and unreserve

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.48
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Functions and Relations Example: Parnas Tables

• Tabular representations of mathematical functions or
relations
– The column and row headers are predicates used to specify cases
– The internal table entries store the possible function results
– An entry “X” either could be invalid under the specified conditions

or the combination of conditions is infeasible

• Note: figure below has wrong headings, disregard

Calc due date(patron, publication, event, Today) =

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.49
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Logic

• An operational notation is a notation used to
describe a problem or a proposed software
solution in terms of situational behavior
– Model of case-based behavior
– Examples: state machine, event traces, data-flow

diagram, functional method
• A descriptive notation is a notation that

describes a problem or a proposed solution in
terms of its properties or its variants
– Example: logic

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.50
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Logic (continued)

• A logic consists of a language for expressing
properties and a set of inference rules for deriving
new, consequent properties from the stated
properties

• In logic, a property specification represents only
those values of the property's variables for which
the property's expression evaluates to true
– The logic used for specifying software requirements is

almost always first-order logic, with its typed variables,
constants, functions, and predicates

– Another common logic usd for software requirements is
temporal logic

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.51
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Logic (continued)

• Consider the following variables of the turnstile
problem, with their initial value

• The first-order logic expressions

num_coins : integer : = 0; /* number of coins inserted */
num_entries : integer := 0; /* number of half - rotations of

turnstile */
barrier : { locked, unlocked} := locked ; /* whether barrier is locked */
may_enter : boolean := false ; /* event of coin being inserted */
push : boolean := false; /* turnstile is pushed suffi ciently
 hard to rotate it one - half rotation */

num_coins > num_entries
(num_coins > num_entries (barrier = unlocked)
(barrier = locked) ¬may_enter

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.52
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Logic (continued)

• Temporal logic introduces additional logical connectives
for constraining how variables can change value over time

• The following connectives constrain future variable values,
over a single execution
– □f Ξ f is true now and throughout the rest of execution
– ♢f Ξ f is true now or at some future point in the execution
– ○f Ξ f is true in the next point in the execution
– f W g = f is true until a point where g is true, but g may never be

true
• Turnstile properties expressed in temporal logic

□(insert_coin => ○ (may_enter W push))
□(∀n(insert_coin ∧ num_coins=n) => ○(num_coins=n+1))

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.53
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Logic Example: Object Constrain Language (OCL)

• A constraint language that is both mathematically
precise and easy for non-mathematicians to read,
write, and understand

• Designed for expressing constraints on object
models, and expressing queries on object type

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.54
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Library Classes Annotated with OCL Properties

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.55
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Logic Example: Z

• A formal requirements-specification language that
– structures set-theoretic definitions of variables into a

complete abstract-data-type model of a problem
– uses logic to express the pre- and post-conditions for

each operation
• Methods of abstractions are used to decompose a

specification into manageable sized modules,
called schemas

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.56
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Partial Z Specification for the Library Problem

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.57
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Algebraic Specifications

• To specify the behavior of operations by
specifying interactions between pairs of
operations rather than modeling individual
operations

• It is hard to define a set of axioms that is
complete and consistent and that reflects the
desired behavior

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.58
© 2006 Pearson/Prentice Hall

4.5 Modeling Notations
Algebraic Specifications Example: SDL Data

• Partial SDL data specification for the library problem

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.59
© 2006 Pearson/Prentice Hall

4.6 Requirements and Specification Languages

• Note: Skipping Section 4.6

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.60
© 2006 Pearson/Prentice Hall

4.7 Prototyping Requirements
Building a Prototype

• To elicit the details of proposed system
• To solicit feedback from potential users about

– which aspects they would like to see improve
– which features are not so useful
– what functionality is missing

• Determine whether the customer's problem has a
feasible solution

• Assist in exploring options for optimizing quality
requirements

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.61
© 2006 Pearson/Prentice Hall

4.7 Prototyping Requirements
Prototyping Example

• Prototype for building a tool to track how much a user exercises
each day

• Graphical respresentation of first prototype, in which the user
must type the day, month and year

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.62
© 2006 Pearson/Prentice Hall

4.7 Prototyping Requirements
Prototyping Example (continued)

• Second prototype shows a more interesting and sophisticated
interface involving a calendar
– User uses a mouse to select the month and year
– The system displays the chart for that month, and the user

selects the appropriate date in the chart

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.63
© 2006 Pearson/Prentice Hall

4.7 Prototyping Requirements
Prototyping Example (continued)

• Third prototype shows that instead of a calendar, the user
is presented with three slide bars
– User uses the mouse to slide each bar left or right
– The box at the bottom of the screen changes to show the selected

day, month, and year

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.64
© 2006 Pearson/Prentice Hall

4.7 Prototyping Requirements
Approaches to Prototyping

• Throwaway approach
– Developed to learn more about a problem or a proposed

solution, and that is never intended to be part of the
delivered software

– Allows us to write “quick-and-dirty” software
• Evolutionary approach

– Developed not only to help us answer questions but also to
be incorporated into the final product

– Prototype has to eventually exhibit the quality requirements
of the final product, and these qualities cannot be retrofitted

• Both techniques are sometimes called rapid
prototyping

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.65
© 2006 Pearson/Prentice Hall

4.7 Prototyping Requirements
Prototyping vs. Modeling

• Prototyping
– Good for answering questions about the user interfaces

• Modeling
– Quickly answer questions about constraints on the

order in which events should occur, or about the
synchronization of activities

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.66
© 2006 Pearson/Prentice Hall

4.8 Requirements Documentation
Requirements Definition: Steps Documenting Process

• Outline the general purpose and scope of the system, including
relevant benefits, objectives, and goals

• Describe the background and the rationale behind proposal for
new system

• Describe the essential characteristics of an acceptable solution
• Describe the environment in which the system will operate
• Outline a description of the proposal, if the customer has a

proposal for solving the problem
• List any assumptions we make about how the environment

behaves

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.67
© 2006 Pearson/Prentice Hall

4.8 Requirements Documentation
Requirements Specification: Steps Documenting Process

• Describe all inputs and outputs in detail, including
– the sources of inputs
– the destinations of outputs,
– the value ranges
– data format of inputs and outputs data
– data protocols
– window formats and organizations
– timing constraint

• Restate the required functionality in terms of the
interfaces' inputs and outputs

• Devise fit criteria for each of the customer's quality
requirements

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.68
© 2006 Pearson/Prentice Hall

4.8 Requirements Documentation
IEEE Standard for SRS Organized by Objects

1. Introduction to the Document
1.1 Purpose of the Product
1.2 Scope of the Product
1.3 Acronyms, Abbreviations, Definitions
1.4 References
1.5 Outline of the rest of the SRS

2. General Description of Product
2.1 Context of Product
2.2 Product Functions
2.3 User Characteristics
2.4 Constraints
2.5 Assumptions and Dependencies

3. Specific Requirements
3.1 External Interface Requirements

3.1.1 User Interfaces
3.1.2 Hardware Interfaces
3.1.3 Software Interfaces
3.1.4 Communications Interfaces

3.2 Functional Requirements
3.2.1 Class 1
3.2.2 Class 2
…

3.3 Performance Requirements
3.4 Design Constraints
3.5 Quality Requirements
3.6 Other Requirements

4. Appendices

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.69
© 2006 Pearson/Prentice Hall

4.8 Requirements Documentation
Process Management and Requirements Traceability

• Process management is a set of procedures that
track
– the requirements that define what the system should do
– the design modules that are generated from the requirement
– the program code that implements the design
– the tests that verify the functionality of the system
– the documents that describe the system

• It provides the threads that tie the system parts
together

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.70
© 2006 Pearson/Prentice Hall

4.8 Requirements Documentation
Development Activities

• Horizontal threads show the coordination between development
activities

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.71
© 2006 Pearson/Prentice Hall

4.9 Validation and Verification

• In requirements validation, we check that our
requirements definition accurately reflects the
customer's needs

• In verification, we check that one document or
artifact conforms to another

• Verification ensures that we build the system
right, whereas validation ensures that we build the
right system

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.72
© 2006 Pearson/Prentice Hall

4.9 Validation and Verification
List of techniques to validate requirements

Validation Walkthroughs

Reading

Interviews

Reviews

Checklists

Models to check functions and

relationships

Scenarios

Prototypes

Simulation

Formal inspections

Verification

Checking

Cross- referencing

Simulation

Consistency checks

Completeness checks

Check for unreachable states or

transitions

Model checking

Mathematical proofs

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.73
© 2006 Pearson/Prentice Hall

4.9 Validation and Verification
Requirements Review

• Review the stated goals and objectives of the system
• Compare the requirements with the goals and objectives
• Review the environment in which the system is to operate
• Review the information flow and proposed functions
• Assess and document the risk, discuss and compare

alternatives
• Testing the system: how the requirements will be

revalidated as the requirements grow and change

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.74
© 2006 Pearson/Prentice Hall

4.9 Validation and Verification
Sidebar 4.8 Number of Requirements Faults

• Jone and Thayes's studies show that
– 35% of the faults attributed to design activities for projects of 30,000-

35,000 delivered source instructions
– 10% of the faults attributed to requirements activities and 55% of the

faults attributed to design activities for projects of 40,000-80,000 delivered
source instructions

– 8% to 10% of the faults attributed to requirements activities and 40% to
55% of the faults attributed to design activities for projects of 65,000-
85,000 delivered source instructions

• Basili and Perricone report
– 48% of the faults observed in a medium-scale software project were

attributed to “incorrect or misinterpreted functional specification or
requirements”

• Beizer attributes 8.12% of the faults in his samples to
problems in functional requirements

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.75
© 2006 Pearson/Prentice Hall

4.9 Validation and Verification
Verification

• Check that the requirements-specification
document corresponds to the requirements-
definition

• Make sure that if we implement a system that
meets the specification, then the system will
satisfy the customer's requirements

• Ensure that each requirement in the definition
document is traceable to the specification

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.76
© 2006 Pearson/Prentice Hall

4.10 Measuring Requirements

• Measurements focus on three areas
– product
– process
– resources

• Number of requirements can give us a sense of the size of
the developed system

• Number of changes to requirements
– Many changes indicate some instability or uncertainty in our

understanding of the system
• Requirement-size and change measurements should be

recorded by requirements type

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.77
© 2006 Pearson/Prentice Hall

4.10 Measuring Requirements
Rating Scheme on Scale from 1 to 5

1. You understand this requirement completely, have designed
systems from similar requirements, and have no trouble
developing a design from this requirement

2. Some elements of this requirement are new, but they are not
radically different from requirements that have been
successfully designed in the past

3. Some elements of this requirement are very different from
requirements in the past, but you understand the requirement
and can develop a good design from it

4. You cannot understand some parts of this requirement, and are
not sure that you can develop a good design

5. You do not understand this requirement at all, and can not
develop a design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.78
© 2006 Pearson/Prentice Hall

4.10 Measuring Requirements
Testers/Designers Profiles

• Figure (a) shows profiles with mostly 1s and 2s
– The requirements are in good shape

• Figure (b) shows profiles with mostly 4s and 5s
– The requirements should be revised

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.79
© 2006 Pearson/Prentice Hall

4.11 Choosing a Specification Technique

• Note: Skipping Section 4.11

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.80
© 2006 Pearson/Prentice Hall

4.12 Information System Example
Picadilly Television System

• High-level diagram captures the essential functionality
– Shows nothing about the ways in which each of these use cases might succeed or fail

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.81
© 2006 Pearson/Prentice Hall

4.12 Information System Example
Picadilly Television System: Message Sequence Chart

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.82
© 2006 Pearson/Prentice Hall

4.12 Information System Example
Picadilly Television System: Partial UML Class Diagram

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.83
© 2006 Pearson/Prentice Hall

4.13 Real-Time Example

• Ariane-5 failed due to requirement validation not
done properly
– Requirements validation could have played a crucial

role in preventing the rocket's explosion
• Two criteria that are especially important for

specifying a system such as Ariane-5
– Testability/simulation and runtime safety
– SDL was rated “strong” for testability/simulation and

runtime safety

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 4.84
© 2006 Pearson/Prentice Hall

4.14 What This Chapter Means for You

• It is essential that the requirements definition and specification
documents describe the problem, leaving solution selection to
designer

• There is a variety of sources and means for eliciting requirements
• There are many different types of definition and specification

techniques
• The specification techniques also differ in terms of their tool support,

maturity, understandability, ease of use, and mathematical formality
• Requirements questions can be answered using models or prototypes
• Requirements must be validated to ensure that they accurately reflect

the customer's expectations

