
CSCI 5828: Foundations of
Software Engineering

Lecture 9 and 10: Planning the Software Project
Slides created by Pfleeger and Atlee for the SE textbook

Some modifications to the original slides have been made by Ken
Anderson for clarity of presentation

02/12/2008 — 02/14/2008

ISBN 0-13-146913-4
Prentice-Hall, 2006

Chapter 3

Planning and
Managing
the Project

Copyright 2006 Pearson/Prentice Hall. All rights reserved.

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.3
© 2006 Pearson/Prentice Hall

Contents

3.1 Tracking Progress
3.2 Project Personnel
3.3 Effort Estimation
3.4 Risk Management
3.5 The Project Plan
3.6 Process Models and Project Management
3.7 Information System Example
3.8 Real Time Example
3.9 What this Chapter Means for You

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.4
© 2006 Pearson/Prentice Hall

Chapter 3 Objectives

• How do you track the progress of a software
project?

• How should you organize project personnel?
• How do you make estimates of project effort and

schedule?
• How do you manage risk?
• How do you integrate process modeling (Chapter

2) with project planning?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.5
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress

• Do you understand a customer’s problems and
needs?

• Can you design a system to solve a customer’s
problems or satisfy a customer’s needs?

• How long will it take you to develop the system?

• How much will it cost to develop the system?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.6
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Project Schedule

• Describes the life cycle for a project by
– enumerating the phases or stages of the project

– decomposing each phase into tasks or activities to be
completed

• Portrays the interactions among the activities

• Estimates the time that each task will take

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.7
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Project Schedule: Approach

• Understanding customer’s needs by listing all
project deliverables
– Documents
– Demonstrations of function
– Demonstrations of subsystems
– Demonstrations of accuracy
– Demonstrations of reliability, performance or security

• Determining milestones and activities to produce
the deliverables

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.8
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Milestones and activities

• Activity: takes place over a period of time
• Milestone: completion of an activity

– a particular point in time
• Precursor: set of events that must occur to start

an activity
• Duration: length of time needed to complete an

activity
• Due date or Deadline: date by which an activity

must be completed

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.9
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Project Schedule (continued)

• Project development can be separated into a
succession of phases which are composed of
steps, which are composed of activities

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.10
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Project Schedule (continued)

• Table 3.1 shows the phases, steps and activities
to build a house
– landscaping phase
– building the house phase

• Table 3.2 lists milestones for building the house
phase

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.11
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Phases, Steps, and Activities in Building a House

Phase 1: Landscaping the lot Phase 2: Building the house

Step 1.1:

Clearing

and

grubbing

 Step 2.1:

Prepare

the site

Activity 1.1.1: Remove trees Activity 2.1.1: Survey the land

Activity 1.1.2: Remove stumps Activity 2.1.2: Request permits

 Step 1.2:

Seeding

the turf

 Activity 2.1.3: Excavate for the

foundation

Activity 1.2.1: Aerate the soil Activity 2.1.4: Buy materials

Activity 1.2.2: Disperse the seeds Step 2.2:

Building

the

exterior

Activity 1.2.3: Water and weed Activity 2.2. 1: Lay the foundation

 Step 1.3:

Planting

shrubs and

trees

Activity 2.2.2: Build the outside walls

Activity 1.3.1: Obtain shrubs and

trees

Activity 2.2.3: Install exterior

plumbing

Activity 1.3.2: Dig holes Activity 2.2.4: Exterior electrical

work

Activity 1.3.3: Plant shrubs and trees Activity 2.2.5: Exterior siding

Activity 1.3.4: Anchor the trees and

mulch around them

Activity 2.2.6: Paint the exterior

 Activity 2.2.7: Install doors and

fixtures

 Activity 2.2.8: Install roof

 Step 2.3:

Finishing

the interior

 Activity 2.3.1: Install the interior

plumbing

 Activity 2.3.2: Install interior

electrical work

 Activity 2.3.3: Install wallboard

 Activity 2.3.4: Paint the interior

 Activity 2.3.5: Install floor covering

 Activit y 2.3.6: Install doors and

fixtures

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.12
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Milestones in Building a House

1.1. Survey complete

1.2. Permits issued

1.3. Excavation complete

1.4. Materials on hand

2.1. Foundation laid

2.2. Outside walls complete

2.3. Exterior plumbing complete

2.4. Exterior electrical work complete

2.5. Exterior siding complete

2.6. Exterior painting complete

2.7. Doors and fixtures mounted

2.8. Roof complete

3.1. Interior plumbing complete

3.2. Interior electrical work complete

3.3. Wallboard in place

3.4. Interior painting complete

3.5. Floor covering laid

3.6. Doors and fixtures mounted

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.13
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Work Breakdown and Activity Graphs

• Work breakdown structure depicts the project as
a set of discrete pieces of work

• Activity graphs depict the dependencies among
activities
– Nodes: project milestones
– Lines: activities involved

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.14
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Work Breakdown and Activity Graphs (continued)

• Activity graph for building a house

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.15
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Estimating Completion

• Adding estimated time in activity graph of each
activity to be completed tells us more about the
project's schedule

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.16
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Estimating Completion for Building a House

Activity Time estimate (in days)

Step 1: Prepare the site

Activity 1.1: Survey the land 3

Activity 1.2: Request permits 15

Activity 1.3: Excavate for the foundation 10

Activity 1.4: Buy materials 10

Step 2: Building the exterior

Activity 2.1: Lay the foundation 15

Activity 2.2: Build the outside walls 20

Activity 2.3: Install exterior plumbing 10

Activity 2.4: Exterior electrical work 10

Activity 2.5: Exterior siding 8

Activity 2.6: Paint the exterior 5

Activity 2.7: Install doors and fixtures 6

Activity 2.8: Install roof 9

Step 3: Finishing the interior

Activity 3.1: Install the interior plumbing 12

Activity 3.2: Install interior electrical work 15

Activity 3.3: Install wallboard 9

Activity 3.4: Paint the interior 18

Activity 3.5: Install floor covering 11

Activity 3.6: Install doors and fixtures 7

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.17
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Critical Path Method (CPM)

• Minimum amount of time it will take to complete a
project
– Reveals those activities that are most critical to

completing the project on time
• Real time (actual time): estimated amount of time

required for the activity to be completed
• Available time: amount of time available in the

schedule for the activity's completion
• Slack time: the difference between the available

time and the real time for that activity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.18
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Critical Path Method (CPM) (continued)

• Critical path: the slack at every node is zero
– can be more than one in a project schedule

• Slack time = available time – real time
 = latest start time – earliest start time

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.19
© 2006 Pearson/Prentice Hall

Slack Time for Activities of Building a
House

Activity Earliest start

time

Latest start

time

Slack

1.1 1 13 12

1.2 1 1 0

1.3 16 16 0

1.4 26 26 0

2.1 36 36 0

2.2 51 51 0

2.3 71 83 12

2.4 81 93 12

2.5 91 103 12

2.6 99 111 12

2.7 104 119 15

2.8 104 116 12

3.1 71 71 0

3.2 83 83 0

3.3 98 98 0

3.4 107 107 0

3.5 107 107 0

3.6 118 118 0

Finish 124 124 0

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.20
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
CPM Bar Chart

• Includes info about the early and late start dates
• Asterisks indicate the critical path

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.21
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Tools to Track Progress

• Example: to track progress of building a
communication software

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.22
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Tools to Track Progress: Gantt Chart

• Activities shown in parallel
– helps understand which activities can be performed

concurrently

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.23
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Tools to Track Progress: Resource Histogram

• Shows people assigned to the project and those
needed for each stage of development

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.24
© 2006 Pearson/Prentice Hall

3.1 Tracking Progress
Tools to Track Progress: Expenditures Tracking

• An example of how expenditures can be
monitored

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.25
© 2006 Pearson/Prentice Hall

3.2 Project Personnel

• Key activities requiring personnel
– requirements analysis
– system design
– program design
– program implementation
– testing
– training
– maintenance
– quality assurance

• There is a great advantage in assigning different
responsibilities to different people

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.26
© 2006 Pearson/Prentice Hall

3.2 Project Personnel
Choosing Personnel

• Ability to perform work
• Interest in work
• Experience with

– similar applications
– similar tools, languages, or techniques
– similar development environments

• Training
• Ability to communicate with others
• Ability to share responsibility
• Management skills

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.27
© 2006 Pearson/Prentice Hall

3.2 Project Personnel
Communication

• A project's progress is affected by
– degree of communication
– ability of individuals to communicate their ideas

• Software failures can result from breakdown in
communication and understanding

• Sidebar: The Mythical Man-Month
– Chapter 2 of Fred Brooks’ book of the same name

The Mythical Man-Month (I)

• Books looks at the “man-month”, i.e. “person-month”,
which is sometimes used to help schedule large projects

• There are several reasons why projects go beyond their
initial schedule estimates
– Developers are optimists
– Our estimating techniques confuse “effort with progress, hiding the

assumption that [people] and months are interchangeable”
– Because we are uncertain about our estimates, we are unwilling to

defend them
– When schedule slippage is detected, we add more people to the

project which is like “dousing a fire with gasoline”

The Mythical Man-Month (II)

• The unit of a person-month implies that workers
and months are interchangeable
– However, this is only true when a task can be

partitioned among many workers with NO
communication among them!

• Brooks points out that cost does indeed vary as
the product of the number of workers and the
number of months. Progress does not!

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.30
© 2006 Pearson/Prentice Hall

The Mythical Man-Month (III)

• When a task is sequential, more effort has no
effect on the schedule
– “The bearing of a child takes nine months, no matter

how many women are assigned!”
• And, unfortunately, many tasks in software

engineering have sequential constraints!
– Especially debugging and system testing

• Although, open source development challenges this
notion a bit

The Mythical Man-Month (IV)

• In addition, most tasks require communication among
workers
– In software development, communication consists of

• training
• sharing information (intercommunication)

• Training will effect effort at worst linearly
– if you have N people to train individually, it will take N*trainingTime

minutes to train them

• Intercommunication on the other hand affects effort in a
non-linear fashion, if each worker has to communicate
with every other worker
– i.e. if there are N workers there are N(N-1)/2 paths between them

The Mythical Man-Month (V)

The Mythical Man-Month (VI)

• 12 workers
– 66 paths!

The Mythical Man-Month (VII)

The Mythical Man-Month (VIII)

• How do we deal with this?
– Team organization
– Scheduling: Need better estimation techniques

• Brooks’s Rule of Thumb for Scheduling Software
Projects
– 1/3 planning
– 1/6 coding
– 1/4 component test
– 1/4 system test

• More time spent planning than normal
– 50% of time allocated to testing!

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.36
© 2006 Pearson/Prentice Hall

3.2 Project Personnel
Work Styles

• Extroverts: tell their thoughts
• Introverts: ask for suggestions
• Intuitives: base decisions on feelings
• Rationals: base decisions on facts, options

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.37
© 2006 Pearson/Prentice Hall

3.2 Project Personnel
Work Styles (continued)

• Horizontal axis: communication styles
• Vertical axis: decision styles

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.38
© 2006 Pearson/Prentice Hall

3.2 Project Personnel
Work Styles (continued)

• Work styles determine communication styles
• Understanding workstyles

– Helps you to be flexible
– give information about other's priorities

• Affect interaction among customers, developers
and users

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.39
© 2006 Pearson/Prentice Hall

3.2 Project Personnel
Project Organization

• Depends on
– backgrounds and work styles of team members
– number of people on team
– management styles of customers and developers

• Examples:
– Chief programmer team: one person totally responsible

for a system's design and development
– Egoless approach: hold everyone equally responsible

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.40
© 2006 Pearson/Prentice Hall

3.2 Project Personnel
Project Organization: Chief Programmer Team

• Each team member must communicate often with
chief, but not necessarily with other team
members

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.41
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation

• Estimating project costs is one of the crucial
aspects of project planning and management

• Estimating cost has to be done as early as
possible during the project life cycle

• Type of costs
– facilities: hardware space, furniture, telephone, etc
– methods and tools
– staff (effort): the biggest component of cost

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.42
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Estimation Should be Done Repeatedly

• Uncertainty early in the project can affect the
accuracy of cost and size estimations

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.43
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Sidebar 3.3 Causes of Inaccurate Estimates

• Key causes
– Frequent request for change by users
– Overlooked tasks
– User's lack of understanding of the requirements
– Insufficient analysis when developing estimate
– Lack of coordination of system development, technical

services, operations, data administration, and other
functions during development

– Lack of an adequate method or guidelines for
estimating

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.44
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Sidebar 3.3 Causes of Inaccurate Estimates (continued)

• Key influences
– Complexity of the proposed application system
– Required integration with existing system
– Complexity of the program in the system
– Size of the system expressed as number of functions or programs
– Capabilities of the project team members
– Project team's experience with the application, the programming

language, and hardware
– Capabilities of the project team members
– Database management system
– Number of project team member
– Extent of programming and documentation standards

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.45
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Type of Estimation Methods

• Expert judgment
• Top-down or bottom-up
– Analogy: pessimistic (x), optimistic (y), most likely (z);

estimate as (x + 4y + z)/6
– Delphi technique: based on the average of “secret”

expert judgments
– Wolverton model: old (mid 70’s)

• Algorithmic methods: E = (a + bSc) m(X)
– Walston and Felix model: E = 5.25S 0.91

– Bailey and Basili model: E = 5.5 + 0.73S1.16

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.46
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Expert Judgement: Wolverton Model

• Two factors that affect difficulty
– whether problem is old (O) or new (N)
– whether it is easy (E) or moderate (M)

 Difficulty

Type of software OE OM OH NE NM NH

Control 21 27 30 33 40 49

Input/output 17 24 27 28 35 43

Pre/post processor 16 23 26 28 34 42

Algorithm 15 20 22 25 30 35

Data management 24 31 35 37 46 57

Time-critical 75 75 75 75 75 75

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.47
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Algorithmic Method: Watson and Felix Model

• A productivity index is included in the equation
• There are 29 factors that can affect productivity

– 1 if it increases the productivity
– 0 if it decreases the productivity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.48
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Watson and Felix Model Productivity Factors

1. Customer interface complexity 16. Use of design and code

inspections

2. User participation in requirements

definition

17. Use of top -down development

3. Customer -originated program

design changes

18. Use of a chief programmer team

4. Customer experience with the

application area

19. Overall complexity of code

5. Overall personnel experience 20. Complexity of application

processing

6. Percentage of development

programmers who participated in the

design of functional specifications

21. Co mplexity of program flow

7. Previous experience with the

operational computer

22. Overall constraints on program’s

design

8. Previous experience with the

programming language

23. Design constraints on the

program’s main storage

9. Previous experien ce with

applications of similar size and

complexity

24. Design constraints on the

program’s timing

10. Ratio of average staff size to

project duration (people per month)

25. Code for real -time or interactive

operation or for execution under

severe time constraints

11. Hardware under concurrent

development

26. Percentage of code for delivery

12. Access to development computer

open under special request

27. Code classified as

nonmathematical application and

input/output formatting programs

13. Access to development computer

closed

28. Number of classes of items in the

database per 1000 lines of code

14. Classified security environment

for computer and at least 25% of

programs and data

29. Number of pages of delivered

documentation per 1000 line s of code

15. Use of structured programming

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.49
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Agorithmic Method: Bailey-Basili technique

• Minimize standard error estimate to produce an equation
such as E = 5.5 + 0.73S1.16

• Adjust initial estimate based on the difference ratio
– If R is the ratio between the actual effort, E, and the

predicted effort, E’, then the effort adjustment is defined as
– ERadj = R – 1 if R > 1
 = 1 – 1/R if R < 1

• Adjust the initial effort estimate Eadj

– Eadj = (1 + ERadj)E if R > 1
 = E/(1 + ERadj) if R < 1

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.50
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Agorithmic Method: Bailey-Basily Modifier

Total methodology

(METH)

Cumulative complexity

(CPLX)

Cumulative experience

(EXP)

Tree charts Customer interface

complexity

Programmer

qualifications

Top-down design Application complexity Programmer machine

experience

Formal documentation Program flo w complexity Programmer language

experience

Chief programmer

teams

Internal communication

complexity

Programmer application

experience

Formal training Database complexity Team experience

Formal test plans External communication

complexity

Design forma lisms Customer -initiated

program design changes

Code reading

Unit development

folders

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.51
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
COCOMO model

• Introduced by Boehm
• COCOMO II

– updated version
– include models of reuse

• The basic models
– E = bScm(X)
– where

• bSc is the initial size-based estimate
• m(X) is the vector of cost driver information

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.52
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
COCOMO II: Stages of Development

• Application composition
– prototyping to resolve high-risk user interface issues
– size estimates in object points

• Early design
– to explore alternative architectures and concepts
– size estimates in function points

• Postarchitecture
– development has begun
– size estimates in lines of code

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.53
© 2006 Pearson/Prentice Hall

Three Stages of COCOMO II

 Stage 1: Stage 2:

 Application Early Stage 3:

 Model Aspect Composition Design Post -architecture

Size Application Function points (FP) FP and language or source lines

 points and language of code (SLOC)

Reuse Implicit in Equivalent SLOC as Equival ent SLOC as function of

 model function of other other variables

 variables

Requirements Implicit in % change expressed as % change expressed as a

change model a cost factor cost factor

Maintenance Application Function of ACT, software Function of ACT, s oftware

 Point understanding, understanding,

 Annual unfamiliarity unfamiliarity

 Change

 Traffic

Scale (c) in 1.0 0.91 to 1.23, depending 0.91 to 1.23, depending on

nominal effort on precedentedness, precedentedness, conformity,

equation conformity , early early architecture, risk resolution,

 architecture, risk team cohesion, and SEI process

 resolution, team maturity

 cohesion, and SEI

 process maturity

Product cost None Complexity, required Reliability, database size,

drivers reusability documentation needs, required reuse,

 and product complexity

Platform cost None Platform difficulty Execution time constraints, main

drivers storage constraints, and virtual

 machine volatility

Personnel None Personnel capability Analyst capability, applications

cost drivers and experience experience, programmer capability,

programmer experience, language and tool

experience, and personnel continuity

Project cost None Required development Use of software tools, required

drivers schedule, devel opment development schedule, and

 environment multisite development

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.54
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
COCOMO II: Estimate Application Points

• To compute application points, first we need to count the
number of screens, reports, and programming language
used to determine the complexity level

8 + medium difficult difficult 4 + medium difficult difficult

For Screens For Reports

Number and source of data tables Number and source of data tables

Number of

views

contained

Total < 4

(<2

server,

<3

client)

Total < 8

(2-3

server,

3-5

client)

Total 8+

(>3

server, >5

client)

Number of

sections

contained

Total < 4

(<2

server,

<3

client)

Total < 8

(2-3

server, 3-

5 client)

Total 8+

(>3

server,

>5

client)

<3 simple simple medium 0 or 1 simple simple medium

3 - 7 simple medium difficult 2 or 3 simple medium difficult

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.55
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
COCOMO II: Estimate Application Point (continued)

• Determine the relative effort required to
implement a report or screen simple, medium, or
difficult

• Calculate the productivity factor based on
developer experience and capability

• Determine the adjustment factors expressed as
multipliers based on rating of the project

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.56
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Complexity Weights for Application Points

Object type Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3GL component - - 10

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.57
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Productivity Estimate Calculation

Developers’ experience and

capability

Very low Low Nominal High Very

high

CASE maturity and

capability

Very low Low Nominal High Very

high

Productivity factor 4 7 13 25 50

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.58
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Tool Use Categories

Category Meaning

Very low Edit, code, debug

Low Simple front -end, back -end CASE, little integration

Nominal Basic life -cycle tools, moderately integrated

High Strong, mature life -cycle tools, moderately

integrated

Very high Strong, mature, proactive life-cycle tools, well -

integrated with processes, methods, reuse

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.59
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Machine Learning Techniques

• Example: case-based reasoning (CBR)
– user identifies new problem as a case
– system retrieves similar cases from repository
– system reuses knowledge from previous cases
– system suggests solution for new case

• Example: neural network
– cause-effect network “trained” with data from past

history

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.60
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Machine Learning Techniques: Neural Network

• Neural network used by Shepperd to produce effort
estimation

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.61
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Machine Learning Techniques: CBR

• Involves four steps
– the user identifies a new problem as a case
– the system retrieves similar case from a respository of

historical information
– the system reuses knowledge from previous case
– the system suggests a solution for the new case

• Two big hurdles in creating successful CBR
system
– characterizing cases
– determining similarity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.62
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Finding the Model for Your Situation

• Mean magnitude of relative error (MMRE)
– absolute value of mean of [(actual - estimate)/actual]
– goal: should be .25 or less

• Pred(x/100): percentage of projects for which
estimate is within x% of the actual
– goal: should be .75 or greater for x = .25

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.63
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Evaluating Models (continued)

• No model appears to have captured the essential
characteristics and their relationships for all types of
development

Model PRED(0.25) MMRE

Walston -Felix 0.30 0.48

Basic COCOMO 0.27 0.60

Intermediate COCOMO 0.63 0.22

Intermediate COCOMO

(variation)

0.76 0.19

Bailey -Basili 0.78 0.18

Pfleeger 0.50 0.29

SLIM 0.06-0.24 0.78-1.04

Jensen 0.06-0.33 0.70-1.01

COPMO 0.38-0.63 0.23-5.7

General COPMO 0.78 0.25

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.64
© 2006 Pearson/Prentice Hall

3.3 Effort Estimation
Evaluating Models (continued)

• It is important to understand which types of effort are
needed during development even when we have
reasonably accurate estimate

• Two different reports of effort distribution from
different researchers

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.65
© 2006 Pearson/Prentice Hall

Planning Poker: What Agile Does

• A student pointed me to a website that is used by
teams using agile life cycles to manage their
software development
– Planning Poker: <http://planningpoker.com/>

• Basic idea:
– A feature is proposed; on-line discussion occurs
– Once all questions have been asked, each person

picks a card with an estimate of how long it will take to
implement the feature

– Once each person has picked a card, the estimates are
shown to all people; discussion occurs again

– repeat until the team has agreed to the estimate

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.66
© 2006 Pearson/Prentice Hall

3.4 Risk Management
What is a Risk?

• Risk is an unwanted event that has negative
consequences

• Distinguish risks from other project events
– Risk impact: the loss associated with the event
– Risk probability: the likelihood that the event will occur
– Risk control: the degree to which we can change the

outcome
• Quantify the effect of risks

– Risk exposure = (risk probability) x (risk impact)
• Risk sources: generic and project-specific

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.67
© 2006 Pearson/Prentice Hall

3.4 Risk Management
Sidebar 3.4 Boehm’s Top Ten Risk Items

• Personnel shortfalls
• Unrealistic schedules and budgets
• Developing the wrong functions
• Developing the wrong user interfaces

• Gold-plating (adding more to a system than specified in the
requirements)

• Continuing stream of requirements changes
• Shortfalls in externally-performed tasks
• Shortfalls in externally-furnished components
• Real-time performance shortfalls
• Straining computer science capabilities

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.68
© 2006 Pearson/Prentice Hall

3.4 Risk Management
Risk Management Activities

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.69
© 2006 Pearson/Prentice Hall

3.4 Risk Management
Risk Management Activities (continued)

• Example of risk exposure calculation

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.70
© 2006 Pearson/Prentice Hall

3.4 Risk Management
Risk Management Activities (continued)

• Three strategies for risk reduction
– Avoiding the risk: change requirements for

performance or functionality
– Transferring the risk: transfer to other system, or buy

insurance
– Assuming the risk: accept and control it

• Cost of reducing risk
– Risk leverage = (risk exposure before reduction – (risk

exposure after reduction) / (cost of risk reduction)
– Example:

<http://syque.com/improvement/Risk%20Reduction%2
0Leverage.htm>

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.71
© 2006 Pearson/Prentice Hall

Project Plan

• Created to communicate risk analysis and
management, project cost estimates, schedule,
and other important information about a proposed
project to customers

• Will vary across organizations
• Note: It is NOT the same as requirements

documents, design documents, etc.
• Instead, it’s the document that organizes the

management of the development project

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.72
© 2006 Pearson/Prentice Hall

3.5 Project Plan
Project Plan Contents

• Project scope
• Project schedule
• Project team organization
• Technical description of

system
• Project standards and

procedures
• Quality assurance plan
• Configuration management

plan

• Documentation plan
• Data management plan
• Resource management

plan
• Test plan
• Training plan
• Security plan
• Risk management plan
• Maintenance plan

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.73
© 2006 Pearson/Prentice Hall

3.6 Process Models and Project Management
Enrollment Management Model: Digital Alpha AXP

• Digital’s Alpha AXP Project
• Created new system architecture involving the creation of four

new operating systems, 22 development teams, many products

• Developed process/project management approach that
• Established an appropriately large shared vision for entire team

• Delegated decisions completely and elicited specific commitments
from participants

• Inspected vigorously and provided supportive feedback

• Acknowledged every advance and learn as the program
progresses

• Rewards based on recognition, not money (sim. to open src)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.74
© 2006 Pearson/Prentice Hall

3.6 Process Models and Project Management
Digital Alpha AXP (continued)

• Vision: to “enroll” the related programs, so they all
shared common goals

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.75
© 2006 Pearson/Prentice Hall

3.6 Process Models and Project Management
Digital Alpha AXP (continued)

• An organization that allowed technical focus and
project focus to contribute to the overall program

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.76
© 2006 Pearson/Prentice Hall

3.6 Process Models and Project Management
Accountability Modeling: Lockheed Martin

• Lockheed Martin’s F16 project
• produced 4M lines of code, 25% had real-time demands

• 250 developers, 8 product teams, chief engineer, program man.

• Employees used to working in matrix organization
– Each engineer belongs to a functional unit based on type of skill

• Project required integrated product development team
– Combines people from different functional units into one

interdisciplinary team

• Each activity tracked using cost estimation, critical path
analysis, schedule tracking
– Earned value a common measure for progress

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.77
© 2006 Pearson/Prentice Hall

3.6 Process Models and Project Management
Accountability modeling:Lockheed Martin (continued)

• Accountability model used in F-16 Project
• Software written

to track handoffs
over time
– Allowed

coordination to
be monitored
by management

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.78
© 2006 Pearson/Prentice Hall

3.6 Process Models and Project Management
Accountability Modeling: Lockheed Martin (continued)

• Teams had multiple, overlapping activities
• An activity map used to illustrate progress on each activity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.79
© 2006 Pearson/Prentice Hall

3.6 Process Models and Project Management
Accountability Modeling: Lockheed Martin (continued)

• Each activitiy's progress was tracked using earned value chart

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.80
© 2006 Pearson/Prentice Hall

3.6 Process Models and Project Management
Anchoring (Common) Milestones

• Life cycle objectives
• Objectives: Why is the system being developed?
• Milestones and schedules: What will be done by when?
• Responsibilities: Who is responsible for a feature?
• Approach: How will the job be done, technically and managerially?
• Resources: How much of each resource is needed?
• Feasibility: Can this be done, and is there a good business reason

for doing it?

• Life-cycle architecture: define the system and software
architectures and address architectural choices and risks

• Initial operational capability: readiness of software, deployment
site, user training

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.81
© 2006 Pearson/Prentice Hall

3.6 Process Models and Project Management
Anchoring Milestones (continued)

• The Win-Win spiral model suggested by Boehm is used
as supplement to the milestones

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 3.82
© 2006 Pearson/Prentice Hall

3.9 What this Chapter Means for You

• Key concepts in project management
– Project planning
– Cost and schedule estimation
– Risk management
– Team Organization

• Project planning involves input from all team
members

• Communication path grows as the size of the
team increases and need to be taken into account
when planning and estimating schedule

