
Agile Development and
Extreme Programming

CSCI 5828: Foundations of
Software Engineering

Lecture 5: Supplement
Kenneth M. Anderson

January 29, 2007 © University of Colorado, 2007 2

Credit where Credit is Due

 The material for this lecture is based on
content from “Agile Software Development:
Principles, Patterns, and Practices” by Robert
C. Martin

 As such, some of this material is copyright ©
Prentice Hall, 2003

January 29, 2007 © University of Colorado, 2007 3

Goals for this lecture

 (Very) Briefly introduce the concepts of Agile
Design and Extreme Programming

 Agile Design is a design framework
 Extreme Programming is one way to

“implement” agile design
 Other agile life cycles include SCRUM, Crystal,

feature-driven development, and adaptive
software development

 See http://www.agilealliance.org/ for pointers

January 29, 2007 © University of Colorado, 2007 4

Outline

 Background on Agile Methods
 Extreme Programming

January 29, 2007 © University of Colorado, 2007 5

Agile Development (I)

 Agile development is a response to the
problems of traditional “heavyweight”
software development processes
 too many artifacts
 too much documentation
 inflexible plans
 late, over budget, and buggy software

January 29, 2007 © University of Colorado, 2007 6

Agile Development (II)

 A manifesto (from the Agile Alliance)
 “We are uncovering better ways of developing

software by doing it and helping others do it.
Through this work we have come to value
 individuals and interactions over processes and tools
 working software over comprehensive documentation
 customer collaboration over contract negotiation
 responding to change over following a plan

 That is, while there is value in the items on the
right, we value the items on the left more

January 29, 2007 © University of Colorado, 2007 7

Agile Development (III)
 From this statement of values, agile development

has identified twelve principles that distinguish agile
practices from traditional software life cycles

 Lets look at five of them
 Deliver Early and Often to Satisfy Customer
 Welcome Changing Requirements
 Face to Face Communication is Best
 Measure Progress against Working Software
 Simplicity is Essential

January 29, 2007 © University of Colorado, 2007 8

Deliver Early and Often to Satisfy Customer

 MIT Sloan Management Review published an
analysis of software development practices in 2001
 Strong correlation between quality of software system and

the early delivery of a partially functioning system
 the less functional the initial delivery the higher the quality

of the final delivery!
 Strong correlation between final quality of software system

and frequent deliveries of increasing functionality
 the more frequent the deliveries, the higher the final quality!

 Customers may choose to put initial/intermediate
systems into production use; or they may simply
review functionality and provide feedback

January 29, 2007 © University of Colorado, 2007 9

Welcome Changing Requirements

 Welcome change, even late in the project!
 Statement of Attitude

 Developers in agile projects are not afraid of
change; changes are good since it means our
understanding of the target domain has increased

 Plus, agile development practices (such as
refactoring) produce systems that are flexible and
thus easy to change

January 29, 2007 © University of Colorado, 2007 10

Face to Face Communication is Best

 In an agile project, people talk to each other!
 The primary mode of communication is

conversation
 there is no attempt to capture all project information in

writing
 artifacts are still created but only if there is an

immediate and significant need that they satisfy
 they may be discarded, after the need has passed

January 29, 2007 © University of Colorado, 2007 11

Measure Progress against Working Software

 Agile projects measure progress by the
amount of software that is currently meeting
customer needs
 They are 30% done when 30% of required

functionality is working AND deployed
 Progress is not measured in terms of phases

or creating documents

January 29, 2007 © University of Colorado, 2007 12

Simplicity is Essential

 This refers to the art of maximizing the
amount of work NOT done
 Agile projects always take the simplest path

consistent with their current goals
 They do not try to anticipate tomorrow’s problems;

they only solve today’s problems
 High-quality work today should provide a simple

and flexible system that will be easy to change
tomorrow if the need arises

January 29, 2007 © University of Colorado, 2007 13

The Other Seven
 The other seven principles are

 Deliver working software frequently
 Stakeholders and developers work together daily
 Build projects around motivated individuals
 Agile processes promote sustainable development
 Continuous attention to technical excellence and good

design enhances agility
 Agile team members work on all aspects of the project
 At regular intervals, the team reflects on how to become

more effective

January 29, 2007 © University of Colorado, 2007 14

Outline

 Background on Agile Methods
 Extreme Programming

January 29, 2007 © University of Colorado, 2007 15

Extreme Programming
 Extreme Programming (XP) takes commonsense

software engineering principles and practices to
extreme levels
 For instance

 “Testing is good?”
 then
 “We will test every day” and “We will write test cases before

we code”
 As Kent Beck says extreme programming takes

certain practices and “sets them at 11 (on a scale of
1 to 10)”

January 29, 2007 © University of Colorado, 2007 16

XP Practices

 The best way to describe XP is by looking at
some of its practices
 There are fourteen standard practices

Customer Team Member
User Stories
Short Cycles
Acceptance Tests
Pair Programming
Test-Driven Development
Collective Ownership

Continuous Integration
Sustainable Pace
Open Workspace
The Planning Game
Simple Design
Refactoring
Metaphor

January 29, 2007 © University of Colorado, 2007 17

Customer Team Member
 The “customer” is made a member of the

development team
 The customer is the person or group who defines

and prioritizes features
 A customer representative should be “in the same

room” or at most 100 feet away from the
developers

 “Release early; Release Often” delivers a working
system to the client organization; in between, the
customer representative provides continuous
feedback to the developers

January 29, 2007 © University of Colorado, 2007 18

User Stories (I)

 We need to have requirements
 XP requirements come in the form of “user

stories” or scenarios
 We need just enough detail to estimate how long

it might take to support this story
 avoid too much detail, since the requirement will most

likely change; start at a high level, deliver working
functionality and iterate based on explicit feedback

January 29, 2007 © University of Colorado, 2007 19

User Stories (II)
 User stories are not documented in detail

 we work out the scenario with the customer “face-to-face”;
we give this scenario a name

 the name is written on an index card
 developers then write an estimate on the card based on the

detail they got during their conversation with the customer

 The index card becomes a “token” which is then
used to drive the implementation of a requirement
based on its priority and estimated cost

January 29, 2007 © University of Colorado, 2007 20

Short Cycles (I)

 An XP project delivers working software
every two weeks that addresses some of the
needs of the customer
 At the end of each iteration, the system is

demonstrated to the customer in order to get
feedback

January 29, 2007 © University of Colorado, 2007 21

Short Cycles (II)
 Iteration Plan

 The collection of user stores that will be implemented
during this iteration

 determined by a “budget” of points
 the budget is determined by the progress made on the

previous iteration
 Release Plan

 A plan that maps out the next six iterations or so (3
months)

 A release is a version of the system that can be put into
production use

January 29, 2007 © University of Colorado, 2007 22

Acceptance Tests
 Details of a user story are captured in the form of

acceptance tests specified by the customer
 The tests are written before a user story is implemented
 They are written in a scripting language or testing

framework that allows them to be run automatically and
repeatedly

 Once a test passes, it is never allowed to fail again (at least
for very long)

 These tests are run several times a day each time the
system is built

January 29, 2007 © University of Colorado, 2007 23

Pair Programming
 All production code is written by pairs of programmers working

together at the same workstation
 One member drives the keyboard and writes code and test

cases; the second watches the code, looking for errors and
possible improvements

 The roles will switch between the two frequently
 Pair membership changes once per day; so that each

programmer works in two pairs each day
 this facilitates distribution of knowledge about the state of the code

throughout the entire team
 Studies indicate that pair programming does not impact

efficiency of the team, yet it significantly reduces the defect rate!
 [Laurie Williams, 2000] [Alistair Cockburn, 2001] [J. Nosek, 1998]

January 29, 2007 © University of Colorado, 2007 24

Test-Driven Development
 All production code is written in order to make failing

test cases pass
 First, we write a test case that fails since the required

functionality has not yet been implemented
 Then, we write the code that makes that test case pass
 Iteration between writing tests and writing code is very

short; on the order of minutes
 As a result, a very complete set of test cases is

written for the system; not developed after the fact

January 29, 2007 © University of Colorado, 2007 25

Collective Ownership
 A pair has the right to check out ANY module and

improve it
 Developers are never individually responsible for a

particular module or technology
 Contrast this with Fred Brook’s conceptual integrity

and the need for a small set of “minds” controlling a
system’s design
 Apparent contradiction is resolved when you note that XP

is designed for use by small programming teams; I haven’t
seen work that tries to scale XP to situations that require
100s or 1000s of developers

January 29, 2007 © University of Colorado, 2007 26

Continuous Integration
 Developers check in code and integrate it

into the larger system several times a day
 Simple Rule: first one to check-in “wins”;

everyone else merges
 Entire system is built every day; if the final

result of a system is a CD, a CD is burned
every day; if the final result is a web site, they
deploy the web site on a test server, etc.
 This avoids the problem of cutting integration

testing to “save time and money”

January 29, 2007 © University of Colorado, 2007 27

Sustainable Pace

 A software project is not a sprint; it’s a
marathon
 A team that leaps off the starting line and races as fast as it

can will burn out long before the finish line
 The team must instead “run” at a sustainable pace

 An XP rule is that a team is not allowed to
work overtime
 This is also stated as “40 hour work week”

January 29, 2007 © University of Colorado, 2007 28

Open Workspace
 The team works together in an open room

 There are tables with workstations
 There are whiteboards on the walls for the team members to use

for status charts, task tracking, UML diagrams, etc.
 Each pair of programmers are within earshot of each other;

information is communicated among the team quickly
 “War room” environments can double productivity

 http://www.sciencedaily.com/releases/2000/12/001206144705.ht
m

 Joel on Software disagrees
 http://www.joelonsoftware.com/items/2006/07/30.html

January 29, 2007 © University of Colorado, 2007 29

The Planning Game
 Customer decides how important a feature is
 Developers decide how much that feature costs
 At the beginning of each release and/or iteration,

developers give customers a budget based on
productivity of previous iteration

 Customers choose user stories whose costs total up
to but do not exceed the budget
 The claim is that it won’t take long for customer and

developers to get used to the system
 and then the pace can be used to estimate cost and

schedule

January 29, 2007 © University of Colorado, 2007 30

Simple Design
 An XP team makes their designs as simple

and expressive as they can be
 They narrow focus to current set of stories and

build the simplest system that can handle those
stories

 Mantras
 Consider the Simplest Thing That Could Possibly

Work
 You Aren’t Going to Need It
 Once and Only Once (aka Don’t Repeat Yourself)

January 29, 2007 © University of Colorado, 2007 31

Refactoring

 XP teams fight “code rot” by employing
refactoring techniques constantly
 They have the confidence to do this because they

also use test-driven design
 By “constantly” we mean every few hours versus

“at the end of the project”, “at the end of the
release”, or “at the end of the iteration”

January 29, 2007 © University of Colorado, 2007 32

Metaphor (I)
 The big picture that ties the whole system together

 Vocabulary that crystallizes the design in a team member’s
head

January 29, 2007 © University of Colorado, 2007 33

Metaphor (II)

 Example
 A system that transmits text to a screen at 60

chars per second; programs write to buffer, when
buffer full, programs are suspended, when buffer
empty, programs are activated
 Metaphor: Dump Trucks Hauling Garbage
 Screen = “Garbage Dump”, Buffer = “Dump Truck”,

Programs = “Garbage Producer”

January 29, 2007 © University of Colorado, 2007 34

Metaphor (III)
 Example

 network traffic analyzer, every 30 minutes, system polled
dozends of network adapters and acquired monitoring
data; Each adaptor provides block of data composed of
several variables
 Metaphor: A toaster toasting bread
 Data Block = “Slices”
 Variables = “Crumbs”
 Network analyzer = “The Toaster”
 Slices are raw data “cooked” by the toaster

January 29, 2007 © University of Colorado, 2007 35

Benefits of XP
 Customer Focus
 Emphasis on teamwork and communication
 Programmer estimates before implementation
 Emphasis on responsibility for quality
 Continuous measurement
 Incremental development
 Simple design
 Frequent redesign via refactoring
 Frequent testing
 Continuous reviews via pair programming

January 29, 2007 © University of Colorado, 2007 36

Criticisms of XP
 Code centered vs. Design centered

 Hurts when developing large systems
 Lack of design documentation

 Limits XP to small systems
 Producing readable code is hard
 Code not good as serving as documentation (listings can run to

1000s of pages)
 Lack of structured inspection process (can miss defects)
 Limited to narrow segment of software application domains
 Methods are only briefly described
 Difficult to obtain management support
 Lack of transition support (how do you switch from waterfall or other

process?)

