
CSCI 5828: Foundations of
Software Engineering

Lecture 5 and 6: Modeling the Process and Life Cycle
Slides created by Pfleeger and Atlee for the SE textbook

Some modifications to the original slides have been made
by Ken Anderson for clarity of presentation

01/29/2008 — 01/31/2008

ISBN 0-13-146913-4
Prentice-Hall, 2006

Chapter 2

Modeling the
Process and Life
Cycle

Copyright 2006 Pearson/Prentice Hall. All rights reserved.

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.3
© 2006 Pearson/Prentice Hall

Contents

2.1 The Meaning of Process
2.2 Software Process Models
2.3 Tools and Techniques for Process Modeling
2.4 Practical Process Modeling
2.5 Information System Example
2.6 Real Time Example
2.7 What this Chapter Means for You

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.4
© 2006 Pearson/Prentice Hall

Chapter 2 Objectives

• Discuss the definition of “process” or “life cycle”
• Discuss standard terminology:

– Software dev. products, processes, and resources
• Present several software life cycles
• Cover tools and techniques for process modeling

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.5
© 2006 Pearson/Prentice Hall

2.1 The Meaning of Process

• process:
– a series of steps involving activities, constrains, and

resources that produce an intended ouput of some kind
• A process involves a set of tools and techniques

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.6
© 2006 Pearson/Prentice Hall

2.1 The Meaning of Process
Process Characteristics

• Prescribes all major process activities
• Uses resources, subject to set of constraints

– (such as a schedule or a budget)
– Constraints may apply to an activity, resource or product

• Produces intermediate and final products
• May be composed of subprocesses with hierarchy or links
• Each process activity has entry and exit criteria
• Activities are organized in sequence, so timing is clear

• Each process has guiding principles, including the goals
of each activity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.7
© 2006 Pearson/Prentice Hall

2.1 The Meaning of Process
The Importance of Processes

• Impose consistency and structure on a set of
activities
– especially across projects in a single organization
– or two or more projects performed by the same team

• Aids engineers in understanding, controlling, and
improving the activities within the process

• Allows engineers to capture/measure our
experiences and use them to improve future
performance

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.8
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Reasons for Modeling a Process

• To form a common understanding across different
stakeholders

• To find inconsistencies, redundancies, omissions

• To find and evaluate appropriate activities for
reaching process goals

• To tailor a general process for a particular
situation in which it will be used

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.9
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Software Life Cycle

• When a process involves building software, the
process may be referred to as software life cycle
– Requirements analysis and definition
– System (architecture) design
– Program (detailed/procedural) design
– Writing programs (coding/implementation)
– Testing: unit, integration, system
– System delivery (deployment)

– Maintenance

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.10
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Software Development Process Models

• Waterfall model
• V model
• Prototyping model
• Operational specification
• Transformational model
• Phased development: increments and iterations
• Spiral model
• Agile methods

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.11
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Waterfall Model

• One of the first process development models
proposed (circa 1970)

• Works for well understood problems with minimal
or no changes in the requirements

• Simple and easy to explain to customers
• It presents

– a very high-level view of the development process
– a sequence of process activities

• Each major phase is marked by milestones and
deliverables (artifacts)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.12
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Waterfall Model (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.13
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Waterfall Model (continued)

• There is no iteration in the original waterfall model
• Most software projects apply a great many

iterations

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.14
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Sidebar 2.1 Drawbacks of The Waterfall Model

• Provides no guidance on how to handle changes
to products and activities during development
(assumes requirements can be frozen)

• Views software development as a manufacturing
process rather than as a creative process

• There is no iterative activities that lead to creating
a final product

• From customer perspective, there can be a long
wait before a final product is delivered

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.15
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Waterfall Model with Prototype

• A prototype is a partially developed product
• Prototyping helps

– developers assess alternative design strategies (design
prototype)

– users understand what the system will be like (user
interface prototype)

• Protopyping is useful for verification and validation
– validation: have all requirements been implemented?
– verification: have all requirements been implemented

correctly and with high quality?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.16
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Waterfall Model with Prototype (continued)

• Waterfall model with prototyping

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.17
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
V Model

• A (slight) variation of the waterfall model
• Uses unit testing to verify program design
• Uses integration testing to verify architectural design
• Uses acceptance testing to validate the requirements

• If problems are found during verification and validation,
the “left side” of the V can be re-executed before testing
on the “right side” is re-enacted

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.18
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
V Model (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.19
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Prototyping Model

• Allows repeated investigation of the requirements
or design

• Reduces risk and uncertainty in the development

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.20
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Operational Specificiation Model

• Requirements are executed (examined) and their
implication evaluated early in the development
process

• Functionality and the design are allowed to be
merged

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.21
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Transformational Model

• Fewer major development steps
• Applies a series of transformations to change a

specification into a deliverable system
– Change data representation
– Select algorithms
– Optimize
– Compile

• Relies on formalism by requiring an initial, formal
specification (to allow transformations)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.22
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Transformational Model (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.23
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Phased Development: Increments and Iterations

• Shorter cycle time
• System delivered in pieces

– enables customers to have some functionality while the
rest is being developed

• Allows two systems functioning in parallel
– the production system (release n): currently being used
– the development system (release n+1): the next

version

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.24
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Phased Development: Increments and Iterations
(continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.25
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Phased Development: Increments and Iterations
(continued)
• Incremental development: starts with small functional subsystem

and adds functionality with each new release
• Iterative development: starts with full (skeleton) system, then

changes functionality of each subsystem with each new release

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.26
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Phased Development: Increments and Iterations
(continued)

• Phased development is desirable for several
reasons
– Training can begin early, even though some functions are

missing

– Frequent releases allow developers to fix unanticipated
problems globally and quickly

– The development team can focus on different areas of
expertise with different releases

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.27
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Spiral Model

• Suggested by Boehm (1988)
• Combines development activities with risk

management to minimize and control risks
• The model is presented as a spiral in which each

iteration is represented by a circuit around four
major activities
– Plan
– Determine goals, alternatives, and constraints
– Evaluate alternatives and risks
– Develop and test

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.28
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Spiral Model (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.29
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Agile Methods
• Emphasis on flexibility in producing software quickly
• Agile manifesto

– Value individuals and interactions over process and tools

– Prefer to invest time in producing working software rather than in
producing comprehensive documentation

– Focus on customer collaboration rather than contract negotiation

– Concentrate on responding to change rather than on creating a plan
and then following it

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.30
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Agile Methods: Examples of Agile Process

• Extreme programming (XP)
• Crystal: a collection of approaches based on the

notion that every project needs a unique set of
policies and conventions

• Scrum: 30-day iterations; multiple self-organizing
teams; daily “scrum” coordination

• Adaptive software development (ASD)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.31
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Agile Methods: Extreme Programming

• Emphasis on four characteristics of agility
– Communication: continual interchange between

customers and developers
– Simplicity: select the simplest design or implementation
– Courage: commitment to delivering functionality early

and often
– Feedback: loops built into the various activitites during

the development process

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.32
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Agile Methods: Twelve Facets of XP

• The planning game
(customer defines value)

• Small releases
• Metaphor (common vision,

common names)

• Simple design
• Writing tests first
• Refactoring

• Pair programming
• Collective ownership
• Continuous integration

(small increments)

• Sustainable pace (40
hours/week)

• On-site customer
• Coding standards

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.33
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Sidebar 2.2 When is Extreme Too Extreme?

• Extreme programming's practices are
interdependent
– A vulnerability if one of them is modified
– Can hinder adoption

• Requirements expressed as a set of test cases
must be passed by the software
– System may pass the tests but is not what the

customer is paying for
• Refactoring issue

– Difficult to rework a system without degrading its
architecture

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.34
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Sidebar 2.3 Collections of Process Models

• Software development is a problem-solving activity
– But process models rarely include (model) problem solving activities

• Curtis, Krasner, and Iscoe (1988) performed a field study (of
17 large software projects) to determine which problem-
solving factors should be captured in a process model

• The results identified five behavioural models that need to
supplement a traditional process model description
– business milieu, company, project, team, and individual
– information from these models can be used to predict impact on the

activities of the traditional process model
• A process model, therefore, should not only describe a series

of tasks, but also should detail factors that contribute to a
project's inherent uncertainty and risk
– based on the dynamics of individuals, teams, and the organization

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.35
© 2006 Pearson/Prentice Hall

• The notation used to document a process model
depends on what we want to capture in the model
– text can be used to capture a process as functions
– graphics can be used to capture a process as “boxes

and arrows”
– A combination can link diagrams to supplemental info

• The two major types of models
– Static models: depict the process, showing how input is

transformed into output
– Dynamic models: enact the process, enabling analysis

2.3 Process Modeling: Tools and Techniques

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.36
© 2006 Pearson/Prentice Hall

• Lai Notation: Not a lot of detail in the textbook
– So, I went hunting for the paper that it was based on
– I found it at the following URL (!)

• http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA262314&Location=U2&doc=GetTRDoc.pdf

– The original paper is 105 pages long and goes into lots
of detail that I can’t cover here

– But, this should give you an idea for the amount of
work it takes to create a process modeling notation

2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.37
© 2006 Pearson/Prentice Hall

• Seven types of process elements
– Activity: a task in the process, augmented with meta

information
– Sequence: the order of activities
– Process model: a particular view of the activities
– Resource: A necessary item, tool, or person
– Control: An external influence over process enactment
– Policy: A high-level constraint
– Organization: A mapping of logical roles to physical

groups
• Several supporting templates, e.g., an Artifact

Definition Template

2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.38
© 2006 Pearson/Prentice Hall

Name Car

Synopsis This is the artifact that represents a class of cars.

Complexity type Composite

Data type (car_c, user -defined)

Artifact -state list

parked ((state_of(car.engine) = off)

(state_of(car.gear) = park)

(state_of(car.speed) =

stand))

Car is not moving, and

engine is not running.

initiated ((state_of(car.engine) = on)

(state_of(car.key_hole) =

has-key)

(state_of(car -driver(car.))

= in -car)

(state_of(car.gear) = drive)

(state_of(car.speed) =

stand))

Car is not moving, but the

engine is run ning

moving ((state_of(car.engine) = on)

(state_of(car.keyhole) =

has-key)

(state_of(car -driver(car.))

= driving)

((state_of(car.gear) =

drive) or (state_of(car.gear)

= reverse))

((state_of(car.speed) =

stand) or

(state_of(car.speed) = slow)

or (state_of(car.speed) =

medium) or

(state_of(car.speed) =

high))

Car is moving forward or

backward.

Sub-artifact list

 doors The four doors of a car.

 engine The engine of a car.

 keyhole The ignition keyhole of a

car.

 gear The gear of a car.

 speed The speed of a car.

Relations list

car-key This is the relation between a car and a key.

car-driver This is the relation between a car and a driver.

2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.39
© 2006 Pearson/Prentice Hall

2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation (continued)

• The process of starting a car

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.40
© 2006 Pearson/Prentice Hall

2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation (continued)

• Transition diagram illustrates the transition for a
car

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.41
© 2006 Pearson/Prentice Hall

• Enables enaction of process to see what happens
to resources and artifacts as activities occur

• Simulate alternatives and make changes to
improve the process

• Example: systems dynamics model

2.3 Tools and Techniques for Process Modeling
Dynamic Modeling

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.42
© 2006 Pearson/Prentice Hall

• Introduced by Forrester in the 1950's
• Abdel-Hamid and Madnick applied it to software

development
• One way to understand system dynamics is by

exploring how software development process
affects productivity

2.3 Tools and Techniques for Process Modeling
Dynamic Modeling: System Dynamics

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.43
© 2006 Pearson/Prentice Hall

2.3 Tools and Techniques for Process Modeling
Dynamic Modeling: System Dynamics (continued)

• Pictorial presentation of factors affecting productivity
• Arrows indicate how changes in one factor change

another

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.44
© 2006 Pearson/Prentice Hall

2.3 Tools and Techniques for Process Modeling
Dynamic Modeling: System Dynamics (continued)

• A system
dynamic
model
containing
four major
areas
affecting
productivity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.45
© 2006 Pearson/Prentice Hall

2.3 Tools and Techniques for Process Modeling
Sidebar 2.4 Process Programming

• A program to describe and enact the process
– Eliminate uncertainty
– Basis of an automated environment to produce software

• Does not capture inherent variability of underlying
development process
– Implementation environment, skill, experience,

understanding the customer needs
• Provides only sequence of tasks
• Gives no warning of impending problems

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.46
© 2006 Pearson/Prentice Hall

2.4 Practical Process Modeling
Marvel Case Studies

• Uses Marvel process language (MPL)
• Three constructs: classes, rules, tool envelopes
• Three-part process description

– rule-based specification of process behavior
– object-oriented definition of model’s information

process
– set of envelopes to interface between Marvel and

external software tools

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.47
© 2006 Pearson/Prentice Hall

2.4 Practical Process Modeling
Marvel Case Studies (continued)

• Involved two AT&T networks
– network carried phone calls
– signaling network responsible for routing calls and

balancing the network load
• Marvel was used to describe the signaling fault

resolution

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.48
© 2006 Pearson/Prentice Hall

2.4 Practical Process Modeling
Marvel Case Studies (continued)

• Signaling Fault Resolution Process

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.49
© 2006 Pearson/Prentice Hall

2.4 Practical Process Modeling
Example of Marvel Commands

T IC K E T :: s u p e r c l a s s E N T IT Y

 s ta tu s : (i n it ia l , o p e n , r e fe r r e d _ o u t, r e fe r r a l _ d o n e ,

 c lo s e d , f ix e d) = in i t i a l ;

 d ia g n o s t ic s : (te r m in a l , n o n _ te r m in a l , n o n e) = n o n e ;

 le v e l : i n te g e r ;

 d e s c r i p t i o n : te x t;

 r e fe r r e d _ to : l in k W O R K C E N T E R ;

 r e fe r r a l s : s e t_ o f li n k T IC K E T ;

 p r o c e s s : l in k P R O C _ IN S T ;

e n d

d i a g n o s e [? t : T IC K E T]:

 (e x i s ts P R O C _ IN S T ? p s u c h th a t (li n k to [? t .p r o c e s s ? p]))

 :

 (a n d (? t.s ta tu s = o p e n } (? t.d ia g n o s t i c s = n o n e))

 { T IC K E T _ U T IL d i a g n o s e ? t.N a m e }

 (a n d (? t.d ia g n o s t ic s = te r m in a l)

(? p . la s t_ ta s k = d i a g n o s e)

(? p .n e x t_ ta s k = r e fe r _ to _ W C 3)) ;

 (a n d (? t.d ia g n o s t ic s = n o n _ te r m in a l)

(? p . la s t_ ta s k = d i a g n o s e)

(? p .n e x t_ ta s k = r e fe r _ to _ W C 2)) ;

Class
definition
for trouble
tickets

Rule for
diagnosing
ticket

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.50
© 2006 Pearson/Prentice Hall

2.4 Practical Process Modeling
Desirable Properties of Process Modeling Tools and
Techniques

• Facilitates human understanding and
communication

• Supports process improvement
• Supports process management
• Provides automated guidance in performing the

process
• Supports automated process execution

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.51
© 2006 Pearson/Prentice Hall

2.5 Information System Example
Piccadilly Television Advertising System

• Needs a system that is easily maintained and
changed

• Requirements may change
– Waterfall model is not applicable

• User interface prototyping is an advantage
• There is uncertainty in regulation and business

constraints
– Need to manage risks

• Spiral model is the most appropriate

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.52
© 2006 Pearson/Prentice Hall

2.5 Information System Example
Piccadilly System (continued)

• Risk can be viewed in terms of two facets
– Probability: the likelyhood a particular problem may

occur
– Severity: the impact it will have on the system

• To manage risk, it needs to include
characterization of risks in the process model
– Risk is an artifact that needs to be described

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.53
© 2006 Pearson/Prentice Hall

2.5 Information System Example
Lai Artifact Table for Piccadilly System

Name Risk (problemX)

Synopsis This is the artifact that represents the risk that problem X

will occur and have a negative affect on some aspect of the

development process.

Complexity type Composite

Data type (risk_s, user_defined)

Artifact -state list

low ((state_of(probability.x) = low)

(state_of(severity.x) = small))

Probability of problem is

low, severity problem

impact is small.

high -medium ((state_of(probability.x) = low)

(state_of(severity.x) = large))

Probability of problem is

low, severity pr oblem

impact is large.

low-medium ((state_of(probability.x) = high)

(state_of(severity.x) = small))

Probability of problem is

high, severity problem

impact is small.

high ((state_of(probability.x) = high)

(state_of(severity.x) = large))

Probability of pr oblem is

high, severity problem

impact is large.

Sub-artifact list

 probability.x The probability that

problem X will occur.

 severity.x The severity of the

impact should problem

X occur on the project.

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.54
© 2006 Pearson/Prentice Hall

2.6 Real Time Example
Ariane-5 Software

• Involved reuse of software from Ariane-4
• Proposed reuse process model

– (note: not actually used!)
– Identify resuable subprocesses, describe them and

place them in a library
– Examine the requirements for the new software and the

reusable components from library and produce revised
set of requirements

– Use the revised requirements to design the software
– Evaluate all reused design components to certify the

correctness and consistency
– Build or change the software

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.55
© 2006 Pearson/Prentice Hall

2.6 Real Time Example
Ariane-5 Software (continued)

• Reuse process model presentation

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.56
© 2006 Pearson/Prentice Hall

2.7 What this Chapter Means for You

• Process development involves activities,
resources, and product

• Process model includes organizational, functional,
behavioral, and other perspectives

• A process model is useful for guiding team
behavior, coordination, and collaboration

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.57
© 2006 Pearson/Prentice Hall

Coming Up Next…

• Week 4
– Lecture 7

• Chapter 3 of Concurrency Textbook
– Lecture 8

• Chapter 4 of Concurrency Textbook

