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Chapter 2 Objectives

• Discuss the definition of “process” or “life cycle”
• Discuss standard terminology:

– Software dev. products, processes, and resources
• Present several software life cycles
• Cover tools and techniques for process modeling
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2.1 The Meaning of Process

• process:
– a series of steps involving activities, constrains, and

resources that produce an intended ouput of some kind
• A process involves a set of tools and techniques
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2.1 The Meaning of Process
Process Characteristics

• Prescribes all major process activities
• Uses resources, subject to set of constraints

– (such as a schedule or a budget)
– Constraints may apply to an activity, resource or product

• Produces intermediate and final products
• May be composed of subprocesses with hierarchy or links
• Each process activity has entry and exit criteria
• Activities are organized in sequence, so timing is clear

• Each process has guiding principles, including the goals
of each activity
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2.1 The Meaning of Process
The Importance of Processes

• Impose consistency and structure on a set of
activities
– especially across projects in a single organization
– or two or more projects performed by the same team

• Aids engineers in understanding, controlling, and
improving the activities within the process

• Allows engineers to capture/measure our
experiences and use them to improve future
performance
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2.2 Software Process Models
Reasons for Modeling a Process

• To form a common understanding across different
stakeholders

• To find inconsistencies, redundancies, omissions

• To find and evaluate appropriate activities for
reaching process goals

• To tailor a general process for a particular
situation in which it will be used
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2.2 Software Process Models
Software Life Cycle

• When a process involves building software, the
process may be referred to as software life cycle
– Requirements analysis and definition
– System (architecture) design
– Program (detailed/procedural) design
– Writing programs (coding/implementation)
– Testing: unit, integration, system
– System delivery (deployment)

– Maintenance
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2.2 Software Process Models
Software Development Process Models

• Waterfall model
• V model
• Prototyping model
• Operational specification
• Transformational model
• Phased development:  increments and iterations
• Spiral model
• Agile methods
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2.2 Software Process Models
Waterfall Model

• One of the first process development models
proposed (circa 1970)

• Works for well understood problems with minimal
or no changes in the requirements

• Simple and easy to explain to customers
• It presents

– a very high-level view of the development process
– a sequence of process activities

• Each major phase is marked by milestones and
deliverables (artifacts)
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2.2 Software Process Models
Waterfall Model (continued)
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2.2 Software Process Models
Waterfall Model (continued)

• There is no iteration in the original waterfall model
• Most software projects apply a great many

iterations
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2.2 Software Process Models
Sidebar 2.1 Drawbacks of The Waterfall Model

• Provides no guidance on how to handle changes
to products and activities during development
(assumes requirements can be frozen)

• Views software development as a manufacturing
process rather than as a creative process

• There is no iterative activities that lead to creating
a final product

• From customer perspective, there can be a long
wait before a final product is delivered
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2.2 Software Process Models
Waterfall Model with Prototype

• A prototype is a partially developed product
• Prototyping helps

– developers assess alternative design strategies (design
prototype)

– users understand what the system will be like (user
interface prototype)

• Protopyping is useful for verification and validation
– validation: have all requirements been implemented?
– verification: have all requirements been implemented

correctly and with high quality?
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2.2 Software Process Models
Waterfall Model with Prototype (continued)

• Waterfall model with prototyping
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2.2 Software Process Models
V Model

• A (slight) variation of the waterfall model
• Uses unit testing to verify program design
• Uses integration testing to verify architectural design
• Uses acceptance testing to validate the requirements

• If problems are found during verification and validation,
the “left side” of the V can be re-executed before testing
on the “right side” is re-enacted
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2.2 Software Process Models
V Model (continued)
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2.2 Software Process Models
Prototyping Model

• Allows repeated investigation of the requirements
or design

• Reduces risk and uncertainty in the development
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2.2 Software Process Models
Operational Specificiation Model

• Requirements are executed (examined) and their
implication evaluated early in the development
process

• Functionality and the design are allowed to be
merged
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2.2 Software Process Models
Transformational Model

• Fewer major development steps
• Applies a series of transformations to change a

specification into a deliverable system
– Change data representation
– Select algorithms
– Optimize
– Compile

• Relies on formalism by requiring an initial, formal
specification (to allow transformations)
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2.2 Software Process Models
Transformational Model (continued)
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2.2 Software Process Models
Phased Development: Increments and Iterations

• Shorter cycle time
• System delivered in pieces

– enables customers to have some functionality while the
rest is being developed

• Allows two systems functioning in parallel
– the production system (release n): currently being used
– the development system (release n+1): the next

version
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2.2 Software Process Models
Phased Development: Increments and Iterations
(continued)
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2.2 Software Process Models
Phased Development: Increments and Iterations
(continued)
• Incremental development: starts with small functional subsystem

and adds functionality with each new release
• Iterative development: starts with full (skeleton) system, then

changes functionality of each subsystem with each new release
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2.2 Software Process Models
Phased Development: Increments and Iterations
(continued)

• Phased development is desirable for several
reasons
– Training can begin early, even though some functions are

missing

– Frequent releases allow developers to fix unanticipated
problems globally and quickly

– The development team can focus on different areas of
expertise with different releases
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2.2 Software Process Models
Spiral Model

• Suggested by Boehm (1988)
• Combines development activities with risk

management to minimize and control risks
• The model is presented as a spiral in which each

iteration is represented by a circuit around four
major activities
– Plan
– Determine goals, alternatives, and constraints
– Evaluate alternatives and risks
– Develop and test
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2.2 Software Process Models
Spiral Model (continued)



Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.29
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Agile Methods
• Emphasis on flexibility in producing software quickly
• Agile manifesto

– Value individuals and interactions over process and tools

– Prefer to invest time in producing working software rather than in
producing comprehensive documentation

– Focus on customer collaboration rather than contract negotiation

– Concentrate on responding to change rather than on creating a plan
and then following it
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2.2 Software Process Models
Agile Methods: Examples of Agile Process

• Extreme programming (XP)
• Crystal: a collection of approaches based on the

notion that every project needs a unique set of
policies and conventions

• Scrum: 30-day iterations; multiple self-organizing
teams; daily “scrum” coordination

• Adaptive software development (ASD)
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2.2 Software Process Models
Agile Methods: Extreme Programming

• Emphasis on four characteristics of agility
– Communication: continual interchange between

customers and developers
– Simplicity: select the simplest design or implementation
– Courage: commitment to delivering functionality early

and often
– Feedback: loops built into the various activitites during

the development process
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2.2 Software Process Models
Agile Methods: Twelve Facets of XP

• The planning game
(customer defines value)

• Small releases
• Metaphor (common vision,

common names)

• Simple design
• Writing tests first
• Refactoring

• Pair programming
• Collective ownership
• Continuous integration

(small increments)

• Sustainable pace (40
hours/week)

• On-site customer
• Coding standards
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2.2 Software Process Models
Sidebar 2.2 When is Extreme Too Extreme?

• Extreme programming's practices are
interdependent
– A vulnerability if one of them is modified
– Can hinder adoption

• Requirements expressed as a set of test cases
must be passed by the software
– System may pass the tests but is not what the

customer is paying for
• Refactoring issue

– Difficult to rework a system without degrading its
architecture



Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.34
© 2006 Pearson/Prentice Hall

2.2 Software Process Models
Sidebar 2.3 Collections of Process Models

• Software development is a problem-solving activity
– But process models rarely include (model) problem solving activities

• Curtis, Krasner, and Iscoe (1988) performed a field study (of
17 large software projects) to determine which problem-
solving factors should be captured in a process model

• The results identified five behavioural models that need to
supplement a traditional process model description
– business milieu, company, project, team, and individual
– information from these models can be used to predict impact on the

activities of the traditional process model
• A process model, therefore, should not only describe a series

of tasks, but also should detail factors that contribute to a
project's inherent uncertainty and risk
– based on the dynamics of individuals, teams, and the organization
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• The notation used to document a process model
depends on what we want to capture in the model
– text can be used to capture a process as functions
– graphics can be used to capture a process as “boxes

and arrows”
– A combination can link diagrams to supplemental info

• The two major types of models
– Static models: depict the process, showing how input is

transformed into output
– Dynamic models: enact the process, enabling analysis

2.3 Process Modeling: Tools and Techniques
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• Lai Notation: Not a lot of detail in the textbook
– So, I went hunting for the paper that it was based on
– I found it at the following URL (!)

• http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA262314&Location=U2&doc=GetTRDoc.pdf

– The original paper is 105 pages long and goes into lots
of detail that I can’t cover here

– But, this should give you an idea for the amount of
work it takes to create a process modeling notation

2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation
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• Seven types of process elements
– Activity: a task in the process, augmented with meta

information
– Sequence: the order of activities
– Process model: a particular view of the activities
– Resource: A necessary item, tool, or person
– Control: An external influence over process enactment
– Policy: A high-level constraint
– Organization: A mapping of logical roles to physical

groups
• Several supporting templates, e.g., an Artifact

Definition Template

2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation
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Name  Car  

Synopsis  This is the artifact that represents a class of cars.  

Complexity type  Composite  

Data type  (car_c, user -defined)  

Artifact -state list   

parked ((state_of(car.engine) = off)  

(state_of(car.gear) = park)  

(state_of(car.speed) = 

stand))  

Car  is not moving, and 

engine is not running.  

initiated  ((state_of(car.engine) = on)  

(state_of(car.key_hole) = 

has-key)  

(state_of(car -driver(car.)) 

= in -car) 

(state_of(car.gear) = drive)  

(state_of(car.speed) = 

stand))  

Car is not moving, but the 

engine is run ning  

moving  ((state_of(car.engine) = on)  

(state_of(car.keyhole) = 

has-key)  

(state_of(car -driver(car.)) 

= driving)  

((state_of(car.gear) = 

drive) or (state_of(car.gear) 

= reverse))  

((state_of(car.speed) = 

stand) or 

(state_of(car.speed) = slow) 

or (state_of( car.speed) = 

medium) or 

(state_of(car.speed) = 

high))  

Car is moving forward or 

backward.  

Sub-artifact list   

 doors  The four doors of a car.  

 engine  The engine of a car.  

 keyhole  The ignition keyhole of a 

car.  

 gear  The gear of a car.  

 speed  The speed  of a car.  

Relations list   

car-key This is the relation between a car and a key.  

car-driver  This is the relation between a car and a driver.  

 

 

2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation
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2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation (continued)

• The process of starting a car
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2.3 Tools and Techniques for Process Modeling
Static Modeling: Lai Notation (continued)

• Transition diagram illustrates the transition for a
car
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• Enables enaction of process to see what happens
to resources and artifacts as activities occur

• Simulate alternatives and make changes to
improve the process

• Example:  systems dynamics model

2.3 Tools and Techniques for Process Modeling
Dynamic Modeling
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• Introduced by Forrester in the 1950's
• Abdel-Hamid and Madnick applied it to software

development
• One way to understand system dynamics is by

exploring how software development process
affects productivity

2.3 Tools and Techniques for Process Modeling
Dynamic Modeling: System Dynamics
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2.3 Tools and Techniques for Process Modeling
Dynamic Modeling: System Dynamics (continued)

• Pictorial presentation of factors affecting productivity
• Arrows indicate how changes in one factor change

another



Pfleeger and Atlee, Software Engineering: Theory and Practice Page 2.44
© 2006 Pearson/Prentice Hall

2.3 Tools and Techniques for Process Modeling
Dynamic Modeling: System Dynamics (continued)

• A system
dynamic
model
containing
four major
areas
affecting
productivity
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2.3 Tools and Techniques for Process Modeling
Sidebar 2.4 Process Programming

• A program to describe and enact the process
– Eliminate uncertainty
– Basis of an automated environment to produce software

• Does not capture inherent variability of underlying
development process
– Implementation environment, skill, experience,

understanding the customer needs
• Provides only sequence of tasks
• Gives no warning of impending problems
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2.4 Practical Process Modeling
Marvel Case Studies

• Uses Marvel process language (MPL)
• Three constructs:  classes, rules, tool envelopes
• Three-part process description

– rule-based specification of process behavior
– object-oriented definition of model’s information

process
– set of envelopes to interface between Marvel and

external software tools
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2.4 Practical Process Modeling
Marvel Case Studies (continued)

• Involved two AT&T networks
– network carried phone calls
– signaling network responsible for routing calls and

balancing the network load
• Marvel was used to describe the signaling fault

resolution
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2.4 Practical Process Modeling
Marvel Case Studies (continued)

• Signaling Fault Resolution Process
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2.4 Practical Process Modeling
Example of Marvel Commands

T IC K E T ::   s u p e r c l a s s  E N T IT Y

  s ta tu s : ( i n it ia l ,  o p e n , r e fe r r e d _ o u t,  r e fe r r a l _ d o n e ,

  c lo s e d , f ix e d )  =  in i t i a l ;

  d ia g n o s t ic s :   ( te r m in a l ,  n o n _ te r m in a l ,  n o n e )  =  n o n e ;

  le v e l :   i n te g e r ;

  d e s c r i p t i o n :  te x t;

  r e fe r r e d _ to :  l in k  W O R K C E N T E R ;

  r e fe r r a l s :   s e t_ o f li n k  T IC K E T ;

  p r o c e s s :  l in k  P R O C _ IN S T ;

e n d

d i a g n o s e  [? t :   T IC K E T ]:

  ( e x i s ts  P R O C _ IN S T  ? p  s u c h th a t ( li n k to  [? t .p r o c e s s  ? p ]) )

  :

  ( a n d  ( ? t.s ta tu s  =  o p e n } ( ? t.d ia g n o s t i c s  =  n o n e ) )

  { T IC K E T _ U T IL  d i a g n o s e  ? t.N a m e }

  ( a n d  ( ? t.d ia g n o s t ic s  =  te r m in a l )

( ? p . la s t_ ta s k  =  d i a g n o s e )

( ? p .n e x t_ ta s k  =  r e fe r _ to _ W C 3 ) ) ;

  ( a n d  ( ? t.d ia g n o s t ic s  =  n o n _ te r m in a l )

( ? p . la s t_ ta s k  =  d i a g n o s e )

( ? p .n e x t_ ta s k  =  r e fe r _ to _ W C 2 ) ) ;

Class
definition
for trouble
tickets

Rule for
diagnosing
ticket
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2.4 Practical Process Modeling
Desirable Properties of Process Modeling Tools and
Techniques

• Facilitates human understanding and
communication

• Supports process improvement
• Supports process management
• Provides automated guidance in performing the

process
• Supports automated process execution
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2.5 Information System Example
Piccadilly Television Advertising System

• Needs a system that is easily maintained and
changed

• Requirements may change
– Waterfall model is not applicable

• User interface prototyping is an advantage
• There is uncertainty in regulation and business

constraints
– Need to manage risks

• Spiral model is the most appropriate
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2.5 Information System Example
Piccadilly System (continued)

• Risk can be viewed in terms of two facets
– Probability: the likelyhood a particular problem may

occur
– Severity: the impact it will have on the system

• To manage risk, it needs to include
characterization of risks in the process model
– Risk is an artifact that needs to be described
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2.5 Information System Example
Lai Artifact Table for Piccadilly System

 

Name Risk (problemX)  

Synopsis  This is the artifact that represents the risk that problem X 

will occur and have a negative affect on some aspect of the 

development process.  

Complexity type  Composite  

Data type  (risk_s, user_defined)  

Artifact -state list   

low ((state_of(probability.x) = low)  

(state_of(severity.x) = small))  

Probability of problem is 

low, severity problem 

impact is small.  

high -medium  ((state_of(probability.x) = low)  

(state_of(severity.x) = large))  

Probability of problem is 

low, severity pr oblem 

impact is large.  

low-medium  ((state_of(probability.x) = high)  

(state_of(severity.x) = small))  

Probability of problem is 

high, severity problem 

impact is small.  

high  ((state_of(probability.x) = high)  

(state_of(severity.x) = large))  

Probability of pr oblem is 

high, severity problem 

impact is large.  

Sub-artifact list   

 probability.x  The probability that 

problem X will occur.  

 severity.x  The severity of the 

impact should problem 

X occur on the project.  
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2.6 Real Time Example
Ariane-5 Software

• Involved reuse of software from Ariane-4
• Proposed reuse process model

– (note: not actually used!)
– Identify resuable subprocesses, describe them and

place them in a library
– Examine the requirements for the new software and the

reusable components from library and produce revised
set of requirements

– Use the revised requirements to design the software
– Evaluate all reused design components to certify the

correctness and consistency
– Build or change the software
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2.6 Real Time Example
Ariane-5 Software (continued)

• Reuse process model presentation
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2.7 What this Chapter Means for You

• Process development involves activities,
resources, and product

• Process model includes organizational, functional,
behavioral, and other perspectives

• A process model is useful for guiding team
behavior, coordination, and collaboration
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Coming Up Next…

• Week 4
– Lecture 7

• Chapter 3 of Concurrency Textbook
– Lecture 8

• Chapter 4 of Concurrency Textbook


