
No Silver Bullet

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Supplement to Lecture 2 — 01/22/2008

© University of Colorado, 2008

1Wednesday, January 23, 2008

Lecture Goals

• Introduce thesis of Fred Brook’s No Silver Bullet

• Classic essay by Fred Brooks discussing “Why is SE so hard?”

• Available at link below:

• No Silver Bullet in IEEE Digitial Library

2Wednesday, January 23, 2008

http://info.computer.org/portal/site/computer/index.jsp?pageID=computer_level1&path=computer/homepage/misc/Brooks&file=index.xml&xsl=article.xsl
http://info.computer.org/portal/site/computer/index.jsp?pageID=computer_level1&path=computer/homepage/misc/Brooks&file=index.xml&xsl=article.xsl

No Silver Bullet

• “There is no single development, in either technology or management
technique, which by itself promises even one order-of-magnitude
improvement within a decade in productivity, in reliability, in simplicity.”

• — Fred Brooks, 1986

• i.e. There is no magical cure for the “software crisis”

3Wednesday, January 23, 2008

Why? Essence and Accidents

• Brooks divides the problems facing software engineering into two categories

• essence: difficulties inherent in the nature of software

• accidents: difficulties related to the production of software

• Brooks argues that most techniques attack the accidents of software
engineering

4Wednesday, January 23, 2008

An Order of Magnitude

• In order to improve the development process by a factor of 10

• first, the accidents of software engineering would have to account for 90%
of the overall effort

• second, tools would have to reduce accidental problems to zero

• Brooks doesn't believe that the former is true…

• and the latter is nigh impossible because each new tool or technique
solves some problems while introducing others

5Wednesday, January 23, 2008

The Essence

• Brooks divides the essence into four subcategories

• complexity

• conformity

• changeability

• invisibility

• Lets consider each in turn

6Wednesday, January 23, 2008

Complexity (I)

• Software entities are amazingly complex

• No two parts (above statements) are alike

• Contrast with materials in other domains

• Large software systems have a huge number of states

• Brooks claims they have an order of magnitude more states than
computers (i.e. hardware) do

• As the size of a system increases, its parts increase exponentially

•

7Wednesday, January 23, 2008

Complexity (II)

• You can't abstract away the complexity of the application domain. Consider:

• air traffic control

• international banking

• flight software for space craft

• These domains are intrinsically complex and this complexity will appear in the
software system as designers attempt to model the domain

• Complexity also comes from the numerous and tight relationships between
heterogeneous software artifacts such as specs, docs, code, test cases,
etc.

8Wednesday, January 23, 2008

Complexity (III)

• Problems resulting from complexity

• difficult team communication

• product flaws

• cost overruns

• schedule delays

• personnel turnover (loss of
knowledge)

• unenumerated states (lots of them)

• lack of extensibility (complexity of
structure)

• unanticipated states (security
loopholes)

• project overview is difficult

9Wednesday, January 23, 2008

Conformity

• A significant portion of the complexity facing software engineers is arbitrary

• Consider designing a software system for an existing business process
and a new VP arrives at the company

• The VP decides to “make a mark” on the company and changes the
business process

• Our system must now conform to the (from our perspective) arbitrary
changes imposed by the VP

• Other instances of conformity

• Having to integrate with a non-standard module interface

• Adapting to a pre-existing environment

• if env. changes, you can bet that software will be asked to change

• Main Point: Its is almost impossible to plan for arbitrary change; instead, you
just have to wait for it to occur and deal with it when it happens

10Wednesday, January 23, 2008

Changeability

• Software is constantly asked to change

• Other things are too, however, manufactured things are rarely changed
after they have been created

• instead, changes appear in later models

• automobiles are recalled only infrequently

• buildings are expensive to remodel

• With software, the pressure to change is greater

• in a project, it is functionality that is often asked to change and software
EQUALS functionality (plus its malleable)

• clients of a software project often don't understand enough about software
to understand when a change request requires significant rework of an
existing system

11Wednesday, January 23, 2008

Invisibility

• Software is by its nature invisible; and it is difficult to design graphical
displays of software that convey meaning to developers

• Contrast to blueprints: here geometry can be used to identify problems and
help optimize the use of space

• But with software, its difficult to reduce it to diagrams

• Hard to get both a “big picture” view as well as a set of detailed views

• Hard to convey just one issue on a single diagram; instead multiple
concerns crowd and/or clutter the diagram hindering understanding

• This lack of visualization deprives the engineer from using the brain's
powerful visual skills

12Wednesday, January 23, 2008

What about “X”?

• Brooks argues that past breakthroughs solve accidental difficulties

• High-level languages

• Time-Sharing

• Programming Environments

• OO Analysis, Design, Programming

• …

13Wednesday, January 23, 2008

Promising Attacks on the Essence

• Buy vs. Build

• Don't develop software when you can avoid it

• Rapid Prototyping

• Use to clarify requirements

• Incremental Development

• don't build software, grow it

• Great designers

• Be on the look out for them, when you find them, don't let go!

14Wednesday, January 23, 2008

No Silver Bullet Refired

• Brooks reflects on the “No Silver Bullet” paper, ten years later

• Lots of people have argued that their methodology, technique, or tool is
the silver bullet for software engineering

• If so, they didn't meet the deadline of 10 years or the target of a 10
times improvement in the production of software

• Other people misunderstood what Brooks calls “obscure writing”

• e.g., when he said “accidental”, he did not mean “occurring by chance”;

• instead, he meant that the use of technique A for benefit B
unfortunately introduced problem C into the process of software
development

15Wednesday, January 23, 2008

The Size of Accidental Effort

• Some people misunderstood his point with the 90% figure

• Brooks doesn't actually think that accidental effort is 90% of the job

• its much smaller than that

• As a result, reducing it to zero (which is effectively impossible) will not give
you an order of magnitude improvement

16Wednesday, January 23, 2008

Obtaining the Increase

• Some people interpreted Brooks as saying that the essence could never be
attacked

• That's not his point however; he said that no single technique could
produce an order of magnitude increase by itself

• He argued that several techniques in tandem could achieve that goal but
that requires industry-wide enforcement and discipline

• Brooks states:

• We will surely make substantial progress over the next 40 years; an order
of magnitude over 40 years is hardly magical…

17Wednesday, January 23, 2008

Coming Up Next

• Lecture 3: Introduction to Concurrency

• Chapter 1 of Magee and Kramer

18Wednesday, January 23, 2008

