
Introduction to Software Engineering

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 2 — 01/17/2008

© University of Colorado, 2008

1Thursday, January 17, 2008

Credit where Credit is Due

• Some text and images for this lecture come from the lecture materials
provided by the publisher of the Pfleeger/Atlee textbook. As such, some
material is copyright © 2006 Pearson/Prentice Hall.

2Thursday, January 17, 2008

Lecture Goals

• Review material in Chapter 1 of the Pfleeger/Atlee book

• What do we mean by software engineering?

• Examine SE’s track record

• What do we mean by good software?

• Examine the “system’s approach” to building software

• Examine how SE has changed over the past three decades

3Thursday, January 17, 2008

What is Software Engineering?

• Simply Put: Its about solving problems with software-based systems

• Design and development of these systems require

• Analysis

• decomposing large problems into smaller, understandable pieces

• abstraction is the key

• Synthesis

• building large software systems from smaller building blocks

• composition is challenging

4Thursday, January 17, 2008

Solving Problems (I)

• The analysis process

5Thursday, January 17, 2008

Solving Problems (II)

• The synthesis process

6Thursday, January 17, 2008

Solving Problems (III)

• To aid us in solving problems, we apply

• techniques: a formal “recipe” for accomplishing a goal that is typically
independent of the tools used

• Example: procedure for thickening a sauce without causing it to curdle

• tools: an instrument or automated system for accomplishing something in
a better way, where “better” can mean more efficient, more accurate,
faster, etc.

• procedures: a combination of tools and techniques that, in concert,
produce a particular product

• paradigms: a particular philosophy or approach for building a product

• Think: “cooking style”: may share procedures, tools, and techniques
with other styles but apply them in different ways

• Example: OO approach to development vs. the structured approach

7Thursday, January 17, 2008

Relationship to Computer Science (I)

• How does Software Engineering relate to the discipline of Computer Science

• Computer Science is a scientific discipline that focuses on developing
new principles, new techniques, new languages, new hardware, etc.

• Software engineering is an engineering discipline that focuses on using
software and computing technology as problem solving tools

• It draws upon the techniques that computer science develops (along
with other disciplines) to aid in the process of solving those problems

8Thursday, January 17, 2008

Relationship to Computer Science (II)

9Thursday, January 17, 2008

Software Engineering: The Good

• Software engineering has helped to produce systems that improve our lives in
numerous ways

• helping us to perform tasks more quickly and effectively

• supporting advances in medicine, agriculture, transportation, and other
industries

• Indeed, software-based systems are now ubiquitous

• How many computers do you have in your home?

• How many times do you interact with a software-based system each day?

10Thursday, January 17, 2008

Software Engineering: The Bad (I)

• Software is not without its problems

• Systems function, but not in the way we expect

• Or systems crash, make mistakes, etc.

• Or the process for producing a system is riddled with problems leading to
a failure to produce the entire system

• many projects get cancelled without ever producing a system

• One study in the late 80s found that in a survey of 600 firms, more than 35%
reported having a runaway development project. A runway project is one in
which the budget and schedule are completely out of control.

11Thursday, January 17, 2008

Software Engineering: The Bad (II)

• CHAOS Report from Standish Group

• Has studied over 40,000 industry software development projects over the
course of 1994 to 2004.

• Success rates (projects completed on-time, within budget) in 2004 was
34%, up from 16.2% in 1994

• Failure rates (projects cancelled before completion) in 2004 was 15%,
down from 31% in 1994.

• In 2004, “challenged” projects made up 51% of the projects included in
the survey.

• A challenged project is one that was over time, over budget and/or
missing critical functionality

12Thursday, January 17, 2008

Software Engineering: The Bad (III)

• Most challenged projects in 2004 had a cost overrun of under 20% of the
budget, compared to 60% in 1994

• The average cost overrun in 2004 was 43% versus an average cost overrun
of 180% in 1994.

• In 2004, total U.S. project waste was 55 billion dollars with 17 billion of that in
cost overruns; Total project spending in 2004 was 255 billion

• In 1994, total U.S. project waste was 140 billion (80 billion from failed
projects) out of a total of 250 billion in project spending

• So, things are getting better (attributed to better project management skills
industry wide), but we've still got a long way to go!

• 66% of the surveyed projects in 2004 did not succeed!

13Thursday, January 17, 2008

Software Engineering: The Ugly (I)

• Loss of NASA’s Mars Climate Observer

• due to conversion error of English and Metric units!

• even worse: problem was known but politics between JPL and Houston
prevented fix from being deployed

• Leap-year bug

• A supermarket was fined $1000 for having meat around 1 day too long on
Feb. 29, 1988

• Denver International Airport

• Luggage system: 16 months late, 3.2 billion dollars over budget!

14Thursday, January 17, 2008

Software Engineering: The Ugly (II)

• IRS hired Sperry Corporation to build an automated federal income tax form
processing process

• An extra $90 M was needed to enhance the original $103 product

• IRS lost $40.2 M on interests and $22.3 M in overtime wages because
refunds were not returned on time

• Therac-25 (safety critical system: failure poses threat to life or health)

• Machine had two modes: “electron beam” and “megavolt x-ray”

• “megavolt” mode delivered x-rays to a patient by colliding high energy
electrons into a “target”

• Patients died when a “race condition” in the software allowed the
megavolt mode to engage when the target was not in position

• Related to a race between a “type ahead” feature in the user interface
and the process for rotating the target into position

15Thursday, January 17, 2008

Terminology for Describing Bugs

• An error is a mistake made by a human

• A fault is the manifestation of the error in a software artifact

• A failure is a departure from a system’s required (or expected) behavior

16Thursday, January 17, 2008

What is Good Software? (I)

• “Good” is often associated with some definition of quality. The higher the
quality, the better the software.

• The problem? Many different definitions of quality!

• Transcendental: where quality is something we can recognize but not
define (“I know it when I see it”)

• User: where quality is determined by evaluating the fitness of a system for
a particular purpose or task (or set of tasks)

• Manufacturing: quality is conformance to a specification

• Product: quality is determined by internal characteristics (e.g. number of
bugs, complexity of modules, etc.)

• Value: quality depends on the amount customers are willing to pay

• customers adopt “user view”; developers adopt “manufacturing view”,
researchers adopt “product view”; “value view” can help to tie these
together

17Thursday, January 17, 2008

What is Good Software? (II)

• Good software engineering must always include a strategy for producing high
quality software

• Three common ways that SE considers quality:

• The quality of the product (product view)

• The quality of the process (manufacturing view)

• The quality of the product in the context of a business environment (user
view)

• The results of the first two are termed the “technical value of a system”

• The latter is termed the “business value of a system”

18Thursday, January 17, 2008

The Quality of the Product

• Users judge a system on external characteristics

• correct functionality, number of failures, types of failures

• Developers judge the system primarily on internal characteristics

• types of faults, reliability, efficiency, etc.

• Quality models can be used to relate the user’s external view to the
developer’s internal view

• An example is McCall’s quality model that relates external software
characteristics to internal characteristics

• This model can be useful to developers: want to increase “reliability”
examine your system’s “consistency, accuracy, and error tolerance”

19Thursday, January 17, 2008

McCall’s Quality Model

20Thursday, January 17, 2008

The Quality of the Process

• Quality of the development and maintenance process is as important as the
product quality

• The development process needs to be modeled

• Modeling will address questions such as

• What steps are needed and in what order?

• Where in the process is effective for finding a particular kind of fault?

• How can you shape the process to find faults earlier?

• How can you shape the process to build fault tolerance into a system?

• Models for Process Improvement (will look at these later)

• SEI’s Capability Maturity Model (CMM)

• ISO 9000

• Software Process Improvement and Capability dEtermination (SPICE)

21Thursday, January 17, 2008

Business Environment Quality

• The business value being generated by the software system

• Is it helping the business do things faster or with less people?

• Does it increase productivity?

• To be useful, business value must be quantified

• A common approach is to use the metric “return on investment” (ROI)

• Problem: Different stakeholders define ROI in different ways!

• Business schools: “what is given up for other purposes”

• U.S. Government: “in terms of dollars, reducing costs, predicting savings”

• U.S. Industry: “in terms of effort rather than cost or dollars; saving time,
using fewer people”

• Differences in definition means that one organization’s ROI can NOT be
compared with another organization’s ROI without careful analysis

22Thursday, January 17, 2008

Software Engineering Roles

• Customer: the company, organization, or person who pays for the software
system

• Developer: the company, organization, or person who is building the software
system

• User: the person or people who will actually use the system

23Thursday, January 17, 2008

A Systems Approach to Software Engineering (I)

• High-Level Overview

• Identify activities and objects

• Define the system boundary (critical)

• Consider nested systems and relationships to other systems

24Thursday, January 17, 2008

A Systems Approach to Software Engineering (II)

• Activities and objects

• An activity is an event initiated by a trigger

• Objects or entities are the elements involved in the activities

• Relationships and the system boundaries

• A relationship defines the interaction among entities and activities

• System boundaries determine the origin of input and destinations of the
output

25Thursday, January 17, 2008

A Systems Approach to Software Engineering (III)

• Example System: Human Respiratory System

26Thursday, January 17, 2008

A Systems Approach to Software Engineering (IV)

• Example System: Paycheck Production

27Thursday, January 17, 2008

A Systems Approach to Software Engineering (V)

• Some systems are dependent on other systems

• The interdependencies may be complex

• It is possible for one system to exist inside another system

• However, if the boundary definitions are sufficiently detailed, building a larger
system from smaller ones is relatively easy

Example of a Layered System

28Thursday, January 17, 2008

Typical Phases in a Software Development Process

• Requirements analysis and definition

• System design

• Program design

• Writing the programs

• Unit testing

• Integration testing

• System testing

• System delivery

• Maintenance

29Thursday, January 17, 2008

Typical Members (Roles) of a Development Team

• Requirement analysts: work with the customers to identify and document
the requirements

• Designers: generate a system-level description of what the system us
supposed to do

• Programmers: write lines of code to implement the design

• Testers: catch faults

• Trainers: show users how to use the system

• Maintenance team: fix faults that show up later

• Librarians: prepare and store documents such as software requirements

• Configuration management team: maintain correspondence among various
artifacts

30Thursday, January 17, 2008

Mapping between Roles and Phases

31Thursday, January 17, 2008

How has Software Engineering Changed? (I)

• Before 1970s

• Single processors: mainframes

• Designed in one of two ways

• as a transformation: input was converted to output

• as a transaction: input determined which function should be performed

• After 1970s

• Run on multiple systems

• Perform multi-functions

32Thursday, January 17, 2008

How has Software Engineering Changed? (II)

• Wasserman’s Seven Key Factors of Change

33Thursday, January 17, 2008

Wasserman’s Discipline of Software Engineering

• Abstraction

• Analysis and design methods and notations

• User interface prototyping

• Software architecture

• Software process

• Reuse

• Measurement

• Tools and integrated environments

34Thursday, January 17, 2008

Abstraction

• A description of a problem at some level of generalization

• Hide (hopefully lots of) details

35Thursday, January 17, 2008

A&D Methods and Notations

• Formalize the process of performing analysis and design

• Provide notations for documenting the outcomes of these proceses

• Facilitate communication among developers, customers, and users

• Allow us to build models and check them for completeness and correctness

• Provide materials that can be re-used between projects

36Thursday, January 17, 2008

Prototyping

• Prototyping: building a small (feature incomplete) version of a system

• Help users identify key requirements of a system

• Demonstrate feasibility

• Develop usable user interface via feedback from users

37Thursday, January 17, 2008

Software Architecture

• A system’s architecture describes the system in terms of a set of architectural
units and relationships between these units

• Architectural decomposition techniques

• Modular decomposition

• Data-oriented decomposition

• Event-driven decomposition

• Outside-in-design decomposition

• based on user inputs to system

• Object-oriented decomposition

38Thursday, January 17, 2008

Software Process

• How to structure the development process (as previously discussed)

• Many different types of process with many variations

• Different types of software need different processes (no “one size fits all”)

• However, having a process gives us something to measure and analyze

• We want to characterize the utility of a process with respect to a particular
context (application domain, resources, skill of developers, etc.)

39Thursday, January 17, 2008

Software Reuse

• Commonalities between applications may allow reusing artifacts from
previous developments

• Improve productivity

• Reduce costs

• Potential concerns

• It may be faster to build a smaller application than searching for reusable
components

• Generalized components take more time to build

• Must clarify who will be responsible for maintaining reusable components

• Generality vs specificity: always a conflict

40Thursday, January 17, 2008

Measurement

• Using measurement to find or improve a software solution to a problem

41Thursday, January 17, 2008

Tools and Integrated Environments

• Platform integration (on heterogeneous networks)

• Presentation integration (commonality of user interface)

• Process integration (linking tools and the development process)

• Data integration (the ability to share data among disparate tools)

• Control integration (the ability of one tool to initiate action in another one)

42Thursday, January 17, 2008

Example Systems

• Book will make use of two example systems to illustrate SE techniques

• Information System: Piccadilly Television Advertising System

• Lots of complex rules that need to be followed

• Large system with many inputs

• Real-Time System: Ariane-5 flight control software

• First Ariane-5 destroyed 40 seconds into maiden voyage

• A software fault had caused the rocket’s booster jets to be fired in
random patterns causing the rocket to veer off course

• 7 billion dollars worth of development went into construction of rocket
system; 500 million dollars worth of satellites were on board

43Thursday, January 17, 2008

Wrapping Up

• Broad overview of Software Engineering

• Reviewed

• Basic problem solving nature of the discipline

• The notion of quality

• The systems approach to software development

• How SE has changed

• Fundamental SE concepts

44Thursday, January 17, 2008

Coming Up Next

• Lecture 3: Introduction to Concurrency

• Chapter 1 of Magee and Kramer

45Thursday, January 17, 2008

