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Credit where Credit is Due

• Some text and images for this lecture come from the lecture materials 
provided by the publisher of the Pfleeger/Atlee textbook. As such, some 
material is copyright © 2006 Pearson/Prentice Hall.
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Lecture Goals

• Review material in Chapter 1 of the Pfleeger/Atlee book

• What do we mean by software engineering?

• Examine SE’s track record

• What do we mean by good software?

• Examine the “system’s approach” to building software

• Examine how SE has changed over the past three decades
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What is Software Engineering?

• Simply Put: Its about solving problems with software-based systems

• Design and development of these systems require

• Analysis

• decomposing large problems into smaller, understandable pieces

• abstraction is the key

• Synthesis

• building large software systems from smaller building blocks

• composition is challenging
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Solving Problems (I)

• The analysis process
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Solving Problems (II)

• The synthesis process
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Solving Problems (III)

• To aid us in solving problems, we apply

• techniques: a formal “recipe” for accomplishing a goal that is typically 
independent of the tools used

• Example: procedure for thickening a sauce without causing it to curdle

• tools: an instrument or automated system for accomplishing something in 
a better way, where “better” can mean more efficient, more accurate, 
faster, etc.

• procedures: a combination of tools and techniques that, in concert, 
produce a particular product

• paradigms: a particular philosophy or approach for building a product

• Think: “cooking style”: may share procedures, tools, and techniques 
with other styles but apply them in different ways

• Example: OO approach to development vs. the structured approach
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Relationship to Computer Science (I)

• How does Software Engineering relate to the discipline of Computer Science

• Computer Science is a scientific discipline that focuses on developing 
new principles, new techniques, new languages, new hardware, etc.

• Software engineering is an engineering discipline that focuses on using 
software and computing technology as problem solving tools

• It draws upon the techniques that computer science develops (along 
with other disciplines) to aid in the process of solving those problems
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Relationship to Computer Science (II)
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Software Engineering: The Good

• Software engineering has helped to produce systems that improve our lives in 
numerous ways

• helping us to perform tasks more quickly and effectively

• supporting advances in medicine, agriculture, transportation, and other 
industries

• Indeed, software-based systems are now ubiquitous

• How many computers do you have in your home?

• How many times do you interact with a software-based system each day?
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Software Engineering: The Bad (I)

• Software is not without its problems

• Systems function, but not in the way we expect

• Or systems crash, make mistakes, etc.

• Or the process for producing a system is riddled with problems leading to 
a failure to produce the entire system

• many projects get cancelled without ever producing a system

• One study in the late 80s found that in a survey of 600 firms, more than 35% 
reported having a runaway development project. A runway project is one in 
which the budget and schedule are completely out of control.
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Software Engineering: The Bad (II)

• CHAOS Report from Standish Group

• Has studied over 40,000 industry software development projects over the 
course of 1994 to 2004.

• Success rates (projects completed on-time, within budget) in 2004 was 
34%, up from 16.2% in 1994

• Failure rates (projects cancelled before completion) in 2004 was 15%, 
down from 31% in 1994.

• In 2004, “challenged” projects made up 51% of the projects included in 
the survey.

• A challenged project is one that was over time, over budget and/or 
missing critical functionality
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Software Engineering: The Bad (III)

• Most challenged projects in 2004 had a cost overrun of under 20% of the 
budget, compared to 60% in 1994

• The average cost overrun in 2004 was 43% versus an average cost overrun 
of 180% in 1994.

• In 2004, total U.S. project waste was 55 billion dollars with 17 billion of that in 
cost overruns; Total project spending in 2004 was 255 billion

• In 1994, total U.S. project waste was 140 billion (80 billion from failed 
projects) out of a total of 250 billion in project spending

• So, things are getting better (attributed to better project management skills 
industry wide), but we've still got a long way to go!

• 66% of the surveyed projects in 2004 did not succeed!
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Software Engineering: The Ugly (I)

• Loss of NASA’s Mars Climate Observer

• due to conversion error of English and Metric units!

• even worse: problem was known but politics between JPL and Houston 
prevented fix from being deployed

• Leap-year bug

• A supermarket was fined $1000 for having meat around 1 day too long on 
Feb. 29, 1988

• Denver International Airport

• Luggage system: 16 months late, 3.2 billion dollars over budget!
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Software Engineering: The Ugly (II)

• IRS hired Sperry Corporation to build an automated federal income tax form 
processing process

• An extra $90 M was needed to enhance the original $103 product

• IRS lost $40.2 M on interests and $22.3 M in overtime wages because 
refunds were not returned on time

• Therac-25 (safety critical system: failure poses threat to life or health)

• Machine had two modes: “electron beam” and “megavolt x-ray”

• “megavolt” mode delivered x-rays to a patient by colliding high energy 
electrons into a “target”

• Patients died when a “race condition” in the software allowed the 
megavolt mode to engage when the target was not in position

• Related to a race between a “type ahead” feature in the user interface 
and the process for rotating the target into position

15Thursday, January 17, 2008



Terminology for Describing Bugs

• An error is a mistake made by a human

• A fault is the manifestation of the error in a software artifact

• A failure is a departure from a system’s required (or expected) behavior
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What is Good Software? (I)

• “Good” is often associated with some definition of quality. The higher the 
quality, the better the software.

• The problem? Many different definitions of quality!

• Transcendental: where quality is something we can recognize but not 
define (“I know it when I see it”)

• User: where quality is determined by evaluating the fitness of a system for 
a particular purpose or task (or set of tasks)

• Manufacturing: quality is conformance to a specification

• Product: quality is determined by internal characteristics (e.g. number of 
bugs, complexity of modules, etc.)

• Value: quality depends on the amount customers are willing to pay

• customers adopt “user view”; developers adopt “manufacturing view”, 
researchers adopt “product view”; “value view” can help to tie these 
together
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What is Good Software? (II)

• Good software engineering must always include a strategy for producing high 
quality software

• Three common ways that SE considers quality:

• The quality of the product (product view)

• The quality of the process (manufacturing view)

• The quality of the product in the context of a business environment (user 
view)

• The results of the first two are termed the “technical value of a system”

• The latter is termed the “business value of a system”
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The Quality of the Product

• Users judge a system on external characteristics

• correct functionality, number of failures, types of failures

• Developers judge the system primarily on internal characteristics

• types of faults, reliability, efficiency, etc.

• Quality models can be used to relate the user’s external view to the 
developer’s internal view

• An example is McCall’s quality model that relates external software 
characteristics to internal characteristics

• This model can be useful to developers: want to increase “reliability” 
examine your system’s “consistency, accuracy, and error tolerance”
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McCall’s Quality Model
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The Quality of the Process

• Quality of the development and maintenance process is as important as the 
product quality

• The development process needs to be modeled

• Modeling will address questions such as

• What steps are needed and in what order?

• Where in the process is effective for finding a particular kind of fault?

• How can you shape the process to find faults earlier?

• How can you shape the process to build fault tolerance into a system?

• Models for Process Improvement (will look at these later)

• SEI’s Capability Maturity Model (CMM)

• ISO 9000

• Software Process Improvement and Capability dEtermination (SPICE)
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Business Environment Quality 

• The business value being generated by the software system

• Is it helping the business do things faster or with less people?

• Does it increase productivity?

• To be useful, business value must be quantified

• A common approach is to use the metric “return on investment” (ROI)

• Problem: Different stakeholders define ROI in different ways!

• Business schools: “what is given up for other purposes”

• U.S. Government: “in terms of dollars, reducing costs, predicting savings”

• U.S. Industry: “in terms of effort rather than cost or dollars; saving time, 
using fewer people”

• Differences in definition means that one organization’s ROI can NOT be 
compared with another organization’s ROI without careful analysis
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Software Engineering Roles

• Customer: the company, organization, or person who pays for the software 
system

• Developer: the company, organization, or person who is building the software 
system

• User: the person or people who will actually use the system
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A Systems Approach to Software Engineering (I)

• High-Level Overview

• Identify activities and objects

• Define the system boundary (critical)

• Consider nested systems and relationships to other systems 
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A Systems Approach to Software Engineering (II)

• Activities and objects

• An activity is an event initiated by a trigger

• Objects or entities are the elements involved in the activities

• Relationships and the system boundaries

• A relationship defines the interaction among entities and activities

• System boundaries determine the origin of input and destinations of the 
output
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A Systems Approach to Software Engineering (III)

• Example System: Human Respiratory System
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A Systems Approach to Software Engineering (IV)

• Example System: Paycheck Production
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A Systems Approach to Software Engineering (V)

• Some systems are dependent on other systems

• The interdependencies may be complex

• It is possible for one system to exist inside another system

• However, if the boundary definitions are sufficiently detailed, building a larger 
system from smaller ones is relatively easy

Example of a Layered System
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Typical Phases in a Software Development Process

• Requirements analysis and definition

• System design

• Program design

• Writing the programs 

• Unit testing

• Integration testing

• System testing

• System delivery

• Maintenance
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Typical Members (Roles) of a Development Team

• Requirement analysts: work with the customers to identify and document 
the requirements

• Designers: generate a system-level description of what the system us 
supposed to do

• Programmers: write lines of code to implement the design

• Testers: catch faults

• Trainers: show users how to use the system

• Maintenance team: fix faults that show up later

• Librarians: prepare and store documents such as software requirements

• Configuration management team: maintain correspondence among various 
artifacts
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Mapping between Roles and Phases
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How has Software Engineering Changed? (I)

• Before 1970s

• Single processors: mainframes

• Designed in one of two ways

• as a transformation: input was converted to output

• as a transaction: input determined which function should be performed

• After 1970s

• Run on multiple systems

• Perform multi-functions
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How has Software Engineering Changed? (II)

• Wasserman’s Seven Key Factors of Change
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Wasserman’s Discipline of Software Engineering

• Abstraction

• Analysis and design methods and notations 

• User interface prototyping

• Software architecture

• Software process

• Reuse

• Measurement

• Tools and integrated environments
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Abstraction

• A description of a problem at some level of generalization

• Hide (hopefully lots of) details
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A&D Methods and Notations

• Formalize the process of performing analysis and design

• Provide notations for documenting the outcomes of these proceses

• Facilitate communication among developers, customers, and users

• Allow us to build models and check them for completeness and correctness

• Provide materials that can be re-used between projects
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Prototyping

• Prototyping: building a small (feature incomplete) version of a system 

• Help users identify key requirements of a system

• Demonstrate feasibility

• Develop usable user interface via feedback from users
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Software Architecture

• A system’s architecture describes the system in terms of a set of architectural 
units and relationships between these units

• Architectural decomposition techniques

• Modular decomposition

• Data-oriented decomposition

• Event-driven decomposition

• Outside-in-design decomposition

• based on user inputs to system

• Object-oriented decomposition
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Software Process

• How to structure the development process (as previously discussed)

• Many different types of process with many variations

• Different types of software need different processes (no “one size fits all”)

• However, having a process gives us something to measure and analyze

• We want to characterize the utility of a process with respect to a particular 
context (application domain, resources, skill of developers, etc.)
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Software Reuse

• Commonalities between applications may allow reusing artifacts from 
previous developments

• Improve productivity

• Reduce costs

• Potential concerns

• It may be faster to build a smaller application than searching for reusable 
components

• Generalized components take more time to build

• Must clarify who will be responsible for maintaining reusable components

• Generality vs specificity: always a conflict
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Measurement

• Using measurement to find or improve a software solution to a problem
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Tools and Integrated Environments

• Platform integration (on heterogeneous networks)

• Presentation integration (commonality of user interface)

• Process integration (linking tools and the development process)

• Data integration (the ability to share data among disparate tools)

• Control integration (the ability of one tool to initiate action in another one)
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Example Systems

• Book will make use of two example systems to illustrate SE techniques

• Information System: Piccadilly Television Advertising System

• Lots of complex rules that need to be followed

• Large system with many inputs

• Real-Time System: Ariane-5 flight control software

• First Ariane-5 destroyed 40 seconds into maiden voyage

• A software fault had caused the rocket’s booster jets to be fired in 
random patterns causing the rocket to veer off course

• 7 billion dollars worth of development went into construction of rocket 
system; 500 million dollars worth of satellites were on board
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Wrapping Up

• Broad overview of Software Engineering

• Reviewed

• Basic problem solving nature of the discipline

• The notion of quality

• The systems approach to software development

• How SE has changed

• Fundamental SE concepts
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Coming Up Next

• Lecture 3: Introduction to Concurrency

• Chapter 1 of Magee and Kramer
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