Object Oriented
Design

Kenneth M. Anderson

Lecture 20

CSCI 5828: Foundations of
Software Engineering




Object-Oriented Design

e T[raditional procedural systems separate data and
procedures, and model these separately

e Object orientation combines data and methods
together into a cohesive whole
data abstraction
e The purpose of Object-Oriented (OO) design is to
define the classes (and their relationships) that are

needed to build a system that meets the
requirements contained in the SRS

OO Design 2



OO A&D

e OO techniques can be used in analysis
(requirements) as well as design

The methods and notations are similar

e In OO analysis we model the problem domain, while
in OO design we model the solution domain

e Often structures created during OO analysis are
subsumed (reused, extended) in the structures
produced by OO design

The line between OO analysis and OO design is blurry, as
analysis structures will transition into model elements of the
target system

OO Design 3



Relationship of OO A&D :

Problem
Domain 1

Representation Design
Solution Domain /

Representation




OO Concepts

e Encapsulation

grouping of related ideas into one unit which we
can refer to by a single name

For example, methods, classes, packages

e Provides information hiding by restricting the
external visibility of a unit’s information

e |n OO A&D, the object is the unit of
encapsulation

An object’s data is hidden behind the public
interface (methods) of the object

OO Design 5



OO Concepts...

e State Retention

the functions of function-oriented design do not retain state;
an object, on the other hand, is aware of its past and
maintains state across method invocations

e Identity — each object can be identified and treated
as a distinct entity
very important issue, see lecture 10
e Behavior — state and methods together define the
behavior of an object, or how an object responds to
the messages passed to it

OO Design 6



OO Concepts..

e Classes — a class is a stencil from which
objects are created; defines the structure and
services of a “class” of objects. A class has

An interface which defines which parts of an
object can be accessed from outside

A body that implements the operations
Instance variables to hold object state
e Objects and classes are different; a class is a
type, an object is an instance
State and identity is associated with objects

OO Design 7



OO Concepts — access

e Operations in a class can be
Public: accessible from outside
Private: accessible only from within the class

Protected: accessible from within the class and
from within subclasses

OO Design 8



Inheritance

e |nheritance is unique to OO and not available
in function-oriented languages/models

e If class B inherits information from class A, it
implicitly acquires the attributes and methods
of A

Attributes and methods of A are reused by B
e \When B inherits from A, B is the subclass or

derived class and A is the base class or
superclass

OO Design 9



Inheritance..

e A subclass B generally has a derived part
(inherited from A) as well as new attributes
(new instance variables or methods)

B’s specification only defines the new attributes

e This creates an “is-a” relationship
objects of type B are also objects of type A

OO Design 10



Inheritance...

X

Base Class

A

"_iS_aUl

Derived Part
(from X)

A

Incremental
Part

(new)

Y — Derived class

11



Inheritance...

e The inheritance relationship between classes
forms a class hierarchy

In models, hierarchy should represent the natural
relationships present in the problem domain

In a hierarchy, all the common features of a set of
objects can be accumulated in a superclass

e This relationship is also known as a
generalization-specialization relationship

since subclasses specialize (or extend) the more
generic information contained in the superclass

OO Design 12



ZeroAreaObject

A

Line

start
end

Graphical Object
color
draw—style
move()
roatate()
scale()
setColor()
A
NonZeroAreaObject
fillColor
fillStyle
OpenCurve
PN
Polygon Circle
noOfsides iggiﬁg
vertices []
area()

OO Design

13



Inheritance...

e There are several types of inheritance

Strict inheritance: a subclass uses all of the features of its
parent class without modification

The subclass only adds new attributes or methods
Non-strict inheritance: a subclass may redefine features of
the superclass or ignore features of the superclass

e Strict inheritance supports “is-a” cleanly and has
fewer side effects

If a subclass redefines a method of the parent, it can
potentially break the contract that the superclass offers its
users

OO Design 14



Inheritance...

e Single inheritance — a subclass inherits from
only one superclass

Class hierarchy is a tree
e Multiple inheritance — a class inherits from
more than one class
Can cause runtime conflicts

Repeated inheritance - a class inherits from a
class but from two separate paths

OO Design 15



Inheritance and Polymorphism

e Inheritance enables polymorphism, i.e. an
object can be of different types

An object of type B is also an object of type A
e Hence an object has a static type and a
dynamic type
Implications on type checking

Also brings dynamic binding of operations which
allows writing of general code where operations
do different things depending on the type

OO Design 16



Module Level Concepts

e Basic modules are classes

e During OO design, a key activity is to specify the
classes in the system being built

e In creating our design, we want it to be “correct” (i.e.

cover its requirements)

But a design should also be “good” — efficient, modifiable,
stable, ...

e We can evaluate an OO design using three
concepts
coupling, cohesion, and open-closed principle

OO Design 17



Coupling

e In OO design, three types of coupling exists
Interaction
component
iInheritance

OO Design 18



Coupling...

e Interaction coupling occurs when the
methods of a class invoke methods of
another class

this can’t be avoided, obviously...

but we want to ensure that an object’s public
interface is used

a method of class A should NOT directly manipulate
the attributes of another class B

Why?

OO Design 19



Coupling...

e Component coupling — when a class A has
variables of another class C

A
A
A

nas instance variables of type C
nas a method with a parameter of type C

nas a method with a local variable of type C

e When A is coupled with C, it is coupled with
all subclasses of C as well

Component coupling will generally imply the
presence of interaction coupling also

OO Design 20



Coupling...

e Inheritance coupling — two classes are
coupled if one is a subclass of the other

again, can’'t be avoided, inheritance is a useful
and desirable feature of OO approaches

however, a subclass should strive to only add
features (attributes, methods) to its superclass

as opposed to modifying the features it inherits from
its superclass

OO Design 21



Cohesion

e Cohesion is an intramodule concept

e Focuses on why elements are together

Only elements tightly related should exist together in a
module (class)

This gives a module a clear abstraction and makes it easier
to understand
e Higher cohesion leads to lower coupling as many
otherwise interacting elements are already
contained in the module

e Goal is to have high cohesion in modules

e Three types of cohesion in OO design
method, class, and inheritance

OO Design 22



Cohesion...

e Method cohesion

A class should attempt to have highly cohesive
methods, in which all of the elements within a
method body help to implement a clearly specified
function

e Class cohesion

A class itself should be cohesive with each of its
methods (and attributes) contributing to
implement the class’s clearly specified role

OO Design 23



Cohesion...

e |Inheritance cohesion — focuses on why
classes are together in a hierarchy

Two reasons for subclassing
generalization-specialization and reuse

The former occurs when the classes in the hierarchy
are modeling true semantic (“is-a”) relationships found
In the problem domain

The latter sometimes occurs when a pre-existing class
does most of what you need but for a different part of
the semantic space; the subclass may not participate
in an “is-a” relationship; this should be avoided!

OO Design 24



Open-closed Principle

e Principle: Classes should be open for
extension but closed for modification

Behavior can be extended to accommodate new
requirements, but existing code is not modified

allows addition of code, but not modification of existing
code

Minimizes risk of having existing functionality stop
working due to changes — a very important
consideration while changing code

OO Design 25



Open-closed Principle...

e |[n OO design, this principle is satisfied by
using inheritance and polymorphism

Inheritance allows creating a new class to extend
behavior without changing the original class

This can be used to support the open-closed
principle

Consider example of a client object which
interacts with a printer object for printing

OO Design 26



Example
0..n 0..n

Client - Printerl

OO Design 27



Example..

e Client directly calls methods on Printer1

e If another printer is required
A new class Printer2 will be created
But the client will have to be modified if it wants to use this
new class

e Alternative approach

Have Printer1 be a subclass of an abstract base class
called Printer

Client is coded to access a variable of type Printer, which is
instantiated to be an instance of the Printer1 class

When Printer2 comes along, it is made a subclass of
Printer as well, and the client can use it without
modification

OO Design 28



Example...

Client

Printer

|

Printer 1

OO Design

Printer 2

29



Liskov’s Substitution Principle

e Principle: A program using an object o1 of
base class C should remain unchanged if o1
Is replaced by an object of a subclass of C

The open-closed principle allows the creation of
hierarchies that intrinsically support this principle

OO Design 30



Unified Modeling Language T
(UML) and Modeling

e UML is a graphical design notation useful for
OO analysis and design
Provides nine types of diagrams to model both
static and dynamic aspects of a software system

e UML is used by various OO design
methodologies to capture decisions about the
structure of a system under design

OO Design 31



Modeling

e Modeling is used in many disciplines

e A model is a simplification of reality
“All models are wrong, some are useful”

e A good model includes those elements that
have broad effect and omits minor elements

A model of a system is not the system!

e We've covered models at the beginning of
the semester in the concurrency textbook

OO Design 32



Modeling

e UML is used to create models of OO systems

e |t contains notations to model both structural
and behavioral aspects of these systems

Structure-related notations

class, object, package, use case, component, and
deployment diagrams

Behavior-related notations
structure, collaboration, state, and activity diagrams

OO Design 33



Class Diagrams

e The class diagram is a central piece of the
design specification of an OO design. It
specifies the

classes in a system

the associations between classes
Including aggregation and composition relationships

the inheritance hierarchy

e \We covered class diagrams back in lecture
10

OO Design 34



Interaction Diagrams

e Class diagrams represent static structures
They do not model the behavior of a system

e Interaction diagrams are used to provide insight into
a system’s dynamic behavior

Useful for showing, e.g., how the objects of a use case
interact to achieve its functionality

Interaction is between objects, not classes
An object look likes a class, except its name is underlined

e Interaction diagrams come in two (mostly
equivalent) styles
Collaboration diagram
Sequence diagram

OO Design 35



Sequence Diagram

e Objects participating in an interaction are shown at
the top
For each object a vertical bar represents its lifeline

A message from one object to another is represented as a
labeled arrow

g/lsegiages can be guarded (similar to boolean guards in

e The ordering of messages is captured along a
sequence diagram’s vertical axis

OO Design 36



Example — sequence diag.

GradReport : Student obj Course taken obj: Course_obj :
GraduationReport Student CourseTaken Course

getStudentDetails()

e
Py

getGrades()

W

getCourseDetails()

e
-~

ReturnDetails()

}----CF--1
A\

ReturnCourseDetails()
-
ey

PrintReport()

o~
-

—-—— =~



Collaboration diagram

e Also shows how objects interact

e Instead of a timeline, the diagram shows the
Instantiation of associations between classes
at run-time

The ordering of a set of messages is captured by
numbering them

OO Design 38



Example — collaboration diag

GradReport :
GraduationReport

1: getStudentDetails{)
—

[
I

Student obj : Student

Course_obj :
Course

{:_
B: StudentDetails

5. ReturnCourseDetails() T

4: ReturnDetails()
—

\LZ getGrades()

F
3: getCourseDetails()

Course_taken_obj :
CourseTaken

39



Other Diagrams

e State diagrams (Labeled Transition Systems)
o ACtIVIty diagrams (from Scott Ambler’s website)

I [otherwise] Enrolling in the
University for the first
lincarrect] [help available] fme
Fill Out Enroliment - Obtain Help to Fill AD #: 007
Forms [trivial Out Forms
. P problems] .

[correct]

-~<— (Attend University W

Qverview
L Presentation J

Enroll in University

- A
L

Make Initial Tuition
Payment

Enroll In Seminar(s

OO Design 40



OO Design Methodologies

e Many OO A&D methodologies have been
proposed

e Basic goal is to identify classes, understand
their behavior, and relationships

Different UML models are used for this

OO Design 41



OO Design

e Basic steps (note: different from text book)
Step 1: Analyze use cases
Step 2: Create activity diagrams for each use case
Step 3: Create class diagram based on 1 and 2

Step 4: Create interaction diagrams for activities contained
In diagrams created in step 2

Step 5: Create state diagrams for classes created in step 3

Step 6: lterate; each step above will reveal information
about the other models that will need to be updated

for instance, services specified on objects in a sequence
diagram, have to be added to those objects’ classes in the
class diagram

OO Design 42



Restaurant example: Initial classes

Supply Handling

Restaurant

SupplyOrder

Menu

Supplies

Order

Bill

43



Supply Handling

SupplyOrder

| o

CreditSupply ()
DebitSupply ()
PlaceOrder ()
ProduceCheck ()

ProduceCheck ()

000
Supplyltem
| X J
Item Name o
Unit Price
N/
Quantity

Restaurant
K>—
SaleStat ()
Descrepancy ()
Menu Menultem
Iltem Name
Item Number
> Price
Supplies Used
®
Order
ProduceBill ()
Quantity

Note: this is not pure
UML notation; see
Lecture 10 for
Additional details

44



Restaurant example: sequence diagram

menu : Menu
i
i
—

read

customer : Customer

1
1
1

kitchen : Kitchern

I
.

order : Order bill : Bill
i
| I
| t
| 1
1
I
1
place order ™ :
]
| prepare
i
' dishes
:
serve :
l
getBill :
I
]
prepare -
bill
bill
-
pay bill |
i
i
) T

OO Design

45



Metrics

e OO metrics focus on identifying the
complexity of classes in an OO design
Weighted Methods per Class
Depth of Inheritance Tree
Number of Children
Coupling Between Classes
Response for a Class
Lack of Cohesion in Methods

OO Design 46



Weighted Methods Per Class

e The complexity of a class depends on the
number of methods it has and the complexity
of those methods

For a class with methods M, M,, ..., M,
determine a complexity value for each method, c,,
Cy, .-+, Cp

using any metric that estimates complexity for
functions (estimated size, interface complexity, data
flow complexity, etc.)

WMC = Zc.; this metric has been shown to have a
reasonable correlation with fault proneness

OO Design 47



Metrics...

e Depth of Inheritance Tree
DIT of class C is depth from the root class

DIT is significant in predicting fault proneness

basic idea: the deeper in the tree, the more methods a
particular class has, making it harder to change

e Number of Children

Immediate number of subclasses of C
Gives a sense of reuse of C’s features

Most classes have a NOC of 0; one study showed,
however, that classes with a high NOC had a tendency to
be less fault prone than others

OO Design 48



Metrics...

e Coupling between classes
Number of classes to which this class is coupled

Two classes are coupled if methods of one use
methods or attributes of another

A study has shown that the CBC metric is
significant in predicting the fault proneness of
classes

OO Design 49



Metrics...

e Response for a Class

CBC metric does not quantify the strength of the
connections its class has with other classes (it only counts
them)

The response for a class metric attempts to quantify this by
capturing the total number of methods that can be invoked
from an object of this class

Thus even if a class has a CBC of “17, its RFC value may
be much higher

A study has shown that the higher a class’s RFC value is,
the larger the probability that class will contain defects

OO Design 50



Metrics...

e Lack of cohesion in methods

Two methods form a cohesive pair if they access common
variables (they form a non-cohesive pair if they have no
common variables)

LCOM is the number of method pairs that are non-cohesive
minus the number of cohesive pairs

e Highly cohesive classes have small LCOM values

A high LCOM value indicates that the class is trying to do
too many things and its features should be partitioned into
different classes

e However, a study found that this metric is NOT
useful in predicting the fault proneness of a class

OO Design 51



Metrics

e Note: the study referenced in the previous
slides was published in the following paper

V. R. Basili, L. Briand, and W. L. Melo. A
validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software
Engineering, 22(10):751-761, Oct 1996.

OO Design 52



Summary

e OO design is a newer paradigm that is replacing function-
oriented design techniques

e OO A&D combines both data and methods into cohesive units
(classes)

e UML is a notation that is often used to model OO systems

It provides various diagrams for modeling a system’s structure,
dynamic behavior, states, architecture, etc.

e Creating an OO design is an iterative process based on
applying the knowledge stored in a system’s use cases

e Several OO metrics exist that are useful in prediciting the fault
proneness of a class

OO Design 53



