
OO Design 1

Object Oriented
Design

Kenneth M. Anderson
Lecture 20

CSCI 5828: Foundations of
Software Engineering

OO Design 2

Object-Oriented Design
 Traditional procedural systems separate data and

procedures, and model these separately
 Object orientation combines data and methods

together into a cohesive whole
 data abstraction

 The purpose of Object-Oriented (OO) design is to
define the classes (and their relationships) that are
needed to build a system that meets the
requirements contained in the SRS

OO Design 3

OO A&D
 OO techniques can be used in analysis

(requirements) as well as design
 The methods and notations are similar

 In OO analysis we model the problem domain, while
in OO design we model the solution domain

 Often structures created during OO analysis are
subsumed (reused, extended) in the structures
produced by OO design
 The line between OO analysis and OO design is blurry, as

analysis structures will transition into model elements of the
target system

OO Design 4

Relationship of OO A&D

OO Design 5

OO Concepts
 Encapsulation

 grouping of related ideas into one unit which we
can refer to by a single name

 For example, methods, classes, packages
 Provides information hiding by restricting the

external visibility of a unit’s information
 In OO A&D, the object is the unit of

encapsulation
 An object’s data is hidden behind the public

interface (methods) of the object

OO Design 6

OO Concepts…
 State Retention

 the functions of function-oriented design do not retain state;
an object, on the other hand, is aware of its past and
maintains state across method invocations

 Identity – each object can be identified and treated
as a distinct entity
 very important issue, see lecture 10

 Behavior – state and methods together define the
behavior of an object, or how an object responds to
the messages passed to it

OO Design 7

OO Concepts..
 Classes – a class is a stencil from which

objects are created; defines the structure and
services of a “class” of objects. A class has
 An interface which defines which parts of an

object can be accessed from outside
 A body that implements the operations
 Instance variables to hold object state

 Objects and classes are different; a class is a
type, an object is an instance
 State and identity is associated with objects

OO Design 8

OO Concepts – access

 Operations in a class can be
 Public: accessible from outside
 Private: accessible only from within the class
 Protected: accessible from within the class and

from within subclasses

OO Design 9

Inheritance

 Inheritance is unique to OO and not available
in function-oriented languages/models

 If class B inherits information from class A, it
implicitly acquires the attributes and methods
of A
 Attributes and methods of A are reused by B

 When B inherits from A, B is the subclass or
derived class and A is the base class or
superclass

OO Design 10

Inheritance..

 A subclass B generally has a derived part
(inherited from A) as well as new attributes
(new instance variables or methods)
 B’s specification only defines the new attributes

 This creates an “is-a” relationship
 objects of type B are also objects of type A

OO Design 11

Inheritance…

OO Design 12

Inheritance…
 The inheritance relationship between classes

forms a class hierarchy
 In models, hierarchy should represent the natural

relationships present in the problem domain
 In a hierarchy, all the common features of a set of

objects can be accumulated in a superclass
 This relationship is also known as a

generalization-specialization relationship
 since subclasses specialize (or extend) the more

generic information contained in the superclass

OO Design 13

OO Design 14

Inheritance…
 There are several types of inheritance

 Strict inheritance: a subclass uses all of the features of its
parent class without modification
 The subclass only adds new attributes or methods

 Non-strict inheritance: a subclass may redefine features of
the superclass or ignore features of the superclass

 Strict inheritance supports “is-a” cleanly and has
fewer side effects
 If a subclass redefines a method of the parent, it can

potentially break the contract that the superclass offers its
users

OO Design 15

Inheritance…

 Single inheritance – a subclass inherits from
only one superclass
 Class hierarchy is a tree

 Multiple inheritance – a class inherits from
more than one class
 Can cause runtime conflicts
 Repeated inheritance - a class inherits from a

class but from two separate paths

OO Design 16

Inheritance and Polymorphism

 Inheritance enables polymorphism, i.e. an
object can be of different types
 An object of type B is also an object of type A

 Hence an object has a static type and a
dynamic type
 Implications on type checking
 Also brings dynamic binding of operations which

allows writing of general code where operations
do different things depending on the type

OO Design 17

Module Level Concepts
 Basic modules are classes
 During OO design, a key activity is to specify the

classes in the system being built
 In creating our design, we want it to be “correct” (i.e.

cover its requirements)
 But a design should also be “good” – efficient, modifiable,

stable, …
 We can evaluate an OO design using three

concepts
 coupling, cohesion, and open-closed principle

OO Design 18

Coupling

 In OO design, three types of coupling exists
 interaction
 component
 inheritance

OO Design 19

Coupling…

 Interaction coupling occurs when the
methods of a class invoke methods of
another class
 this can’t be avoided, obviously…
 but we want to ensure that an object’s public

interface is used
 a method of class A should NOT directly manipulate

the attributes of another class B
 Why?

OO Design 20

Coupling…

 Component coupling – when a class A has
variables of another class C
 A has instance variables of type C
 A has a method with a parameter of type C
 A has a method with a local variable of type C

 When A is coupled with C, it is coupled with
all subclasses of C as well
 Component coupling will generally imply the

presence of interaction coupling also

OO Design 21

Coupling…

 Inheritance coupling – two classes are
coupled if one is a subclass of the other
 again, can’t be avoided, inheritance is a useful

and desirable feature of OO approaches
 however, a subclass should strive to only add

features (attributes, methods) to its superclass
 as opposed to modifying the features it inherits from

its superclass

OO Design 22

Cohesion
 Cohesion is an intramodule concept
 Focuses on why elements are together

 Only elements tightly related should exist together in a
module (class)

 This gives a module a clear abstraction and makes it easier
to understand

 Higher cohesion leads to lower coupling as many
otherwise interacting elements are already
contained in the module

 Goal is to have high cohesion in modules
 Three types of cohesion in OO design

 method, class, and inheritance

OO Design 23

Cohesion…

 Method cohesion
 A class should attempt to have highly cohesive

methods, in which all of the elements within a
method body help to implement a clearly specified
function

 Class cohesion
 A class itself should be cohesive with each of its

methods (and attributes) contributing to
implement the class’s clearly specified role

OO Design 24

Cohesion…
 Inheritance cohesion – focuses on why

classes are together in a hierarchy
 Two reasons for subclassing

 generalization-specialization and reuse
 The former occurs when the classes in the hierarchy

are modeling true semantic (“is-a”) relationships found
in the problem domain

 The latter sometimes occurs when a pre-existing class
does most of what you need but for a different part of
the semantic space; the subclass may not participate
in an “is-a” relationship; this should be avoided!

OO Design 25

Open-closed Principle

 Principle: Classes should be open for
extension but closed for modification
 Behavior can be extended to accommodate new

requirements, but existing code is not modified
 allows addition of code, but not modification of existing

code
 Minimizes risk of having existing functionality stop

working due to changes – a very important
consideration while changing code

OO Design 26

Open-closed Principle…

 In OO design, this principle is satisfied by
using inheritance and polymorphism
 Inheritance allows creating a new class to extend

behavior without changing the original class
 This can be used to support the open-closed

principle
 Consider example of a client object which

interacts with a printer object for printing

OO Design 27

Example

OO Design 28

Example..
 Client directly calls methods on Printer1
 If another printer is required

 A new class Printer2 will be created
 But the client will have to be modified if it wants to use this

new class
 Alternative approach

 Have Printer1 be a subclass of an abstract base class
called Printer

 Client is coded to access a variable of type Printer, which is
instantiated to be an instance of the Printer1 class

 When Printer2 comes along, it is made a subclass of
Printer as well, and the client can use it without
modification

OO Design 29

Example…

OO Design 30

Liskov’s Substitution Principle

 Principle: A program using an object o1 of
base class C should remain unchanged if o1
is replaced by an object of a subclass of C
 The open-closed principle allows the creation of

hierarchies that intrinsically support this principle

OO Design 31

Unified Modeling Language
(UML) and Modeling

 UML is a graphical design notation useful for
OO analysis and design
 Provides nine types of diagrams to model both

static and dynamic aspects of a software system
 UML is used by various OO design

methodologies to capture decisions about the
structure of a system under design

OO Design 32

Modeling
 Modeling is used in many disciplines
 A model is a simplification of reality

 “All models are wrong, some are useful”
 A good model includes those elements that

have broad effect and omits minor elements
 A model of a system is not the system!

 We’ve covered models at the beginning of
the semester in the concurrency textbook

OO Design 33

Modeling

 UML is used to create models of OO systems
 It contains notations to model both structural

and behavioral aspects of these systems
 Structure-related notations

 class, object, package, use case, component, and
deployment diagrams

 Behavior-related notations
 structure, collaboration, state, and activity diagrams

OO Design 34

Class Diagrams

 The class diagram is a central piece of the
design specification of an OO design. It
specifies the
 classes in a system
 the associations between classes

 including aggregation and composition relationships
 the inheritance hierarchy

 We covered class diagrams back in lecture
10

OO Design 35

Interaction Diagrams
 Class diagrams represent static structures

 They do not model the behavior of a system
 Interaction diagrams are used to provide insight into

a system’s dynamic behavior
 Useful for showing, e.g., how the objects of a use case

interact to achieve its functionality
 Interaction is between objects, not classes

 An object look likes a class, except its name is underlined
 Interaction diagrams come in two (mostly

equivalent) styles
 Collaboration diagram
 Sequence diagram

OO Design 36

Sequence Diagram
 Objects participating in an interaction are shown at

the top
 For each object a vertical bar represents its lifeline
 A message from one object to another is represented as a

labeled arrow
 Messages can be guarded (similar to boolean guards in

FSP)
 The ordering of messages is captured along a

sequence diagram’s vertical axis

OO Design 37

Example – sequence diag.

OO Design 38

Collaboration diagram

 Also shows how objects interact
 Instead of a timeline, the diagram shows the

instantiation of associations between classes
at run-time
 The ordering of a set of messages is captured by

numbering them

OO Design 39

Example – collaboration diag

OO Design 40

Other Diagrams

 State diagrams (Labeled Transition Systems)
 Activity diagrams (from Scott Ambler’s website)

OO Design 41

OO Design Methodologies

 Many OO A&D methodologies have been
proposed

 Basic goal is to identify classes, understand
their behavior, and relationships
 Different UML models are used for this

OO Design 42

OO Design
 Basic steps (note: different from text book)

 Step 1: Analyze use cases
 Step 2: Create activity diagrams for each use case
 Step 3: Create class diagram based on 1 and 2
 Step 4: Create interaction diagrams for activities contained

in diagrams created in step 2
 Step 5: Create state diagrams for classes created in step 3
 Step 6: Iterate; each step above will reveal information

about the other models that will need to be updated
 for instance, services specified on objects in a sequence

diagram, have to be added to those objects’ classes in the
class diagram

OO Design 43

Restaurant example: Initial classes

OO Design 44

Note: this is not pure
UML notation; see
Lecture 10 for
Additional details

OO Design 45

Restaurant example: sequence diagram

OO Design 46

Metrics

 OO metrics focus on identifying the
complexity of classes in an OO design
 Weighted Methods per Class
 Depth of Inheritance Tree
 Number of Children
 Coupling Between Classes
 Response for a Class
 Lack of Cohesion in Methods

OO Design 47

Weighted Methods Per Class
 The complexity of a class depends on the

number of methods it has and the complexity
of those methods
 For a class with methods M1, M2, …, Mn,

determine a complexity value for each method, c1,
c2, …, cn
 using any metric that estimates complexity for

functions (estimated size, interface complexity, data
flow complexity, etc.)

 WMC = Σci ; this metric has been shown to have a
reasonable correlation with fault proneness

OO Design 48

Metrics…
 Depth of Inheritance Tree

 DIT of class C is depth from the root class
 DIT is significant in predicting fault proneness

 basic idea: the deeper in the tree, the more methods a
particular class has, making it harder to change

 Number of Children
 Immediate number of subclasses of C
 Gives a sense of reuse of C’s features
 Most classes have a NOC of 0; one study showed,

however, that classes with a high NOC had a tendency to
be less fault prone than others

OO Design 49

Metrics…

 Coupling between classes
 Number of classes to which this class is coupled
 Two classes are coupled if methods of one use

methods or attributes of another
 A study has shown that the CBC metric is

significant in predicting the fault proneness of
classes

OO Design 50

Metrics…
 Response for a Class

 CBC metric does not quantify the strength of the
connections its class has with other classes (it only counts
them)

 The response for a class metric attempts to quantify this by
capturing the total number of methods that can be invoked
from an object of this class

 Thus even if a class has a CBC of “1”, its RFC value may
be much higher

 A study has shown that the higher a class’s RFC value is,
the larger the probability that class will contain defects

OO Design 51

Metrics…
 Lack of cohesion in methods

 Two methods form a cohesive pair if they access common
variables (they form a non-cohesive pair if they have no
common variables)

 LCOM is the number of method pairs that are non-cohesive
minus the number of cohesive pairs

 Highly cohesive classes have small LCOM values
 A high LCOM value indicates that the class is trying to do

too many things and its features should be partitioned into
different classes

 However, a study found that this metric is NOT
useful in predicting the fault proneness of a class

OO Design 52

Metrics

 Note: the study referenced in the previous
slides was published in the following paper
 V. R. Basili, L. Briand, and W. L. Melo. A

validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software
Engineering, 22(10):751-761, Oct 1996.

OO Design 53

Summary
 OO design is a newer paradigm that is replacing function-

oriented design techniques
 OO A&D combines both data and methods into cohesive units

(classes)
 UML is a notation that is often used to model OO systems

 It provides various diagrams for modeling a system’s structure,
dynamic behavior, states, architecture, etc.

 Creating an OO design is an iterative process based on
applying the knowledge stored in a system’s use cases

 Several OO metrics exist that are useful in prediciting the fault
proneness of a class

