
The Cathedral and the Bazaar

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2001

Guest Lecture

March 19, 2001 © Kenneth M. Anderson, 2001 2

Today’s Lecture

• Discuss Background of the Paper

• Discuss Raymond’s “Rules”

• Open Discussion on the Open-Source
Approach

March 19, 2001 © Kenneth M. Anderson, 2001 3

The Cathedral

• The Cathedral
– equated to the traditional software life cycle

– characterized by few releases with the goal being to
reduce the bugs encountered by users

– “I believed that important software needed to be built
like cathedrals, carefully crafted by individual wizards
or small bands of mages working in splendid isolation,
with no beta to be released before its time”

– Linux overturned this belief which was based on
Raymond’s experience with GNU software

March 19, 2001 © Kenneth M. Anderson, 2001 4

GNU Software

• GNU’s Not Unix (Recursive Acronym)
– GNU is an effort by the Free Software Foundation to

create free software tools better than the commercial
tools they replace

– Accompanied by the GNU copyleft
(as opposed to a copyright)

• Modifications can be made to the software as long as the
modifier releases both the software and the source code of the
modifications (This is my understanding)

– Began work in the mid-1980s



March 19, 2001 © Kenneth M. Anderson, 2001 5

The Bazaar

• “… rather, the Linux community seemed to
resemble a great babbling bazaar of differing
agendas and approaches (…) out of which a
coherent and stable system could seemingly
emerge only by a succession of miracles”

• software development characterized by
– release early and often

– delegate as much as possible

– be open to feedback “to the point of promiscuity”

March 19, 2001 © Kenneth M. Anderson, 2001 6

Background to the Paper

• Raymond joined the Linux community and
formed an understanding of why it works
– To test his theory, he consciously choose to run

a smaller scale software project using the
Bazaar-style of development

– Most of the paper concerns his experience with
fetchmail (previously popclient)

March 19, 2001 © Kenneth M. Anderson, 2001 7

Users as co-developers

• Treat your users as co-developers
– “least-hassle route to rapid code development and

effective debugging”

– Release early. Release often. And listen to your
customers.

• users are “stimulated and rewarded” by constant improvement

• maximize the number of person-hours spent debugging

– Problem transparency
• With a large set of people, a problem discovered by one has a

solution that is often transparent to another

March 19, 2001 © Kenneth M. Anderson, 2001 8

Linus’ Law

• Given enough eyeballs, all bugs are shallow
– Debugging is parallelizable [Jeff Dutky]

• Or as Brooks would say
– The task can be partitioned with minimal

communication between parties

– As such, this brings it closer to the realm in
which workers and months can be
interchanged!



March 19, 2001 © Kenneth M. Anderson, 2001 9

Raymond’s Process

• In order to test his open source theory
– fetchmail was released early and often (every 10 days)

– Anyone who contacted Raymond about fetchmail was
added to the beta-list (300 people at its largest)

– Each release was accompanied by a “chatty”
announcement that encouraged participation

– Raymond listened to his users; especially important:
design decisions were “voted” on, developers who sent
in patches/feedback were “stroked”

March 19, 2001 © Kenneth M. Anderson, 2001 10

Some results

• “If you treat your beta-testers as if they’re your
most valuable resource, they will respond by
becoming your most valuable resource”

• A critical design decision was submitted by one of
the users
– “Often, the most striking and innovative solutions come

from realizing that your concept of the problem was
wrong”

• The same holds for optimizing code (you often have to switch
to a new algorithm to get major speed increases)

March 19, 2001 © Kenneth M. Anderson, 2001 11

Necessary Preconditions

• The Bazaar Style requires
– An existing software system

• You can’t code from the ground up

• Plus, you need to give something to your users that motivate
them to participate

– A coordinator must
• be able to recognize good ideas

• have a base level of design and coding skill (peer pressure
prevents projects from starting otherwise)

• have good people and communication skills

March 19, 2001 © Kenneth M. Anderson, 2001 12

Social Concerns

• “Many people would expect a culture of
self-directed egoists [hackers] to be
fragmented, territorial, wasteful, secretive,
and hostile.”

• Raymond asserts that open source avoids
this because the “economics” of this society
is based on maximizing ego satisfaction and
reputation among other hackers



March 19, 2001 © Kenneth M. Anderson, 2001 13

Counter-Claim to Brook’s Law

• Provided the development coordinator has a
medium at least as good as the Internet, and
knows how to lead without coercion, many
heads are inevitably better than one.

• Use of Brooks throughout paper
– “I quoted several bits from Fred Brooks’s

classic The Mythical Man-Month because, in
many respects, his insights have yet to be
improved upon.”

March 19, 2001 © Kenneth M. Anderson, 2001 14

Parallels to Brooks

• “Plan to Throw One Away”

• Conceptual Integrity
– The coordinator acts as a chief architect

• “More Users find More Bugs”

• No Silver Bullet
– What essential difficulties are being addressed

by the open source movement?


