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Today’s Lecture

• Discuss aspects of the Extreme
Programming Model
– As presented in “Extreme Programming

Explained: Embrace Change” by Kent Beck

– Why “Extreme”?
• Extreme Programming (XP) takes commonsense

principles and practices to extreme levels
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The Basic Problem: Risk

• Beck argues that “risk” is the main problem
of software development
– Schedule slips
– Project canceled
– Business Changes
– Staff Turnovers

• XP is a methodology that “addresses risk at
all levels of the development process”
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Four “Control” Variables

• Beck defines four control variables in software
development
– Cost

– Time

– Quality

– Scope

• External forces get to pick the values of any three
variables; the development team picks the value of
the fourth
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Four Variables, cont.

• Beck argues that the values of all four
variables need to be “visible”
– If stakeholders can see all four variables they

can consciously choose which variables to
control

– If they do not like the resulting value of the
fourth variable, they can choose to change the
inputs or choose to control a different set of
three
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“Scope” is Important

• Beck argues that “scope” is the most
important of the four
– By adjusting project scope based on the values

of the other three, you increase your chance of
success

• This perspective is backed by XP practices
– Practice making estimates

– Implement most important requirements first
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Cost Curve

• Cost of Change increases exponentially over time
– its cheaper to fix a bug if its caught early in the life

cycle

• XP is predicated on the notion that given the right
set of practices, the cost curve can be flattened

• This is a BIG assumption and may make adoption
of XP impossible for some organizations
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How to Flatten the Curve?

• Technology
– Objects

• Used correctly they provide extreme flexibility

– Object Databases

• Practices
– Simple Design, Automated Tests, Refactoring

• ...
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Learning to Drive

• Beck tells a story of learning to drive
– Mom first told him “line the car up in the middle of the

lane, straight toward the horizon”
• Beck drives car off the road!

– Mom then tells him “Driving is not about getting the
car going in the right direction. Driving is about
constantly paying attention, making a little correction
this way, a little correction that way.”

• This is the paradigm for XP. Change is constant
and must be constantly monitored and adapted to
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Four “Values” underlying XP

• Communication
– via several mediums: conversation, code, tests, metrics

• Simplicity
– Beck says “Simplicity is not easy”

• Feedback
– Tests as well as user feedback

• Courage
– XP resembles a hill-climbing algorithm; you can get

stuck in local optima
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Basic Principles

• Rapid Feedback

• Assume Simplicity

• Incremental Change

• Embracing Change

• Quality Work
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XP Practices

• The Planning Game

• Small Releases

• Metaphor

• Simple Design

• Testing

• Refactoring

• Pair Programming

• Collective Ownership

• Continuous
Integration

• 40-hour Week

• On-site Customer

• Coding Standards


