
Extreme Programming

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2001

Guest Lecture

March 21, 2001 © Kenneth M. Anderson, 2001 2

Today’s Lecture

• Discuss aspects of the Extreme
Programming Model
– As presented in “Extreme Programming

Explained: Embrace Change” by Kent Beck

– Why “Extreme”?
• Extreme Programming (XP) takes commonsense

principles and practices to extreme levels

March 21, 2001 © Kenneth M. Anderson, 2001 3

The Basic Problem: Risk

• Beck argues that “risk” is the main problem
of software development
– Schedule slips
– Project canceled
– Business Changes
– Staff Turnovers

• XP is a methodology that “addresses risk at
all levels of the development process”

March 21, 2001 © Kenneth M. Anderson, 2001 4

Four “Control” Variables

• Beck defines four control variables in software
development
– Cost

– Time

– Quality

– Scope

• External forces get to pick the values of any three
variables; the development team picks the value of
the fourth



March 21, 2001 © Kenneth M. Anderson, 2001 5

Four Variables, cont.

• Beck argues that the values of all four
variables need to be “visible”
– If stakeholders can see all four variables they

can consciously choose which variables to
control

– If they do not like the resulting value of the
fourth variable, they can choose to change the
inputs or choose to control a different set of
three

March 21, 2001 © Kenneth M. Anderson, 2001 6

“Scope” is Important

• Beck argues that “scope” is the most
important of the four
– By adjusting project scope based on the values

of the other three, you increase your chance of
success

• This perspective is backed by XP practices
– Practice making estimates

– Implement most important requirements first

March 21, 2001 © Kenneth M. Anderson, 2001 7

Cost Curve

• Cost of Change increases exponentially over time
– its cheaper to fix a bug if its caught early in the life

cycle

• XP is predicated on the notion that given the right
set of practices, the cost curve can be flattened

• This is a BIG assumption and may make adoption
of XP impossible for some organizations

March 21, 2001 © Kenneth M. Anderson, 2001 8

How to Flatten the Curve?

• Technology
– Objects

• Used correctly they provide extreme flexibility

– Object Databases

• Practices
– Simple Design, Automated Tests, Refactoring

• ...



March 21, 2001 © Kenneth M. Anderson, 2001 9

Learning to Drive

• Beck tells a story of learning to drive
– Mom first told him “line the car up in the middle of the

lane, straight toward the horizon”
• Beck drives car off the road!

– Mom then tells him “Driving is not about getting the
car going in the right direction. Driving is about
constantly paying attention, making a little correction
this way, a little correction that way.”

• This is the paradigm for XP. Change is constant
and must be constantly monitored and adapted to

March 21, 2001 © Kenneth M. Anderson, 2001 10

Four “Values” underlying XP

• Communication
– via several mediums: conversation, code, tests, metrics

• Simplicity
– Beck says “Simplicity is not easy”

• Feedback
– Tests as well as user feedback

• Courage
– XP resembles a hill-climbing algorithm; you can get

stuck in local optima

March 21, 2001 © Kenneth M. Anderson, 2001 11

Basic Principles

• Rapid Feedback

• Assume Simplicity

• Incremental Change

• Embracing Change

• Quality Work

March 21, 2001 © Kenneth M. Anderson, 2001 12

XP Practices

• The Planning Game

• Small Releases

• Metaphor

• Simple Design

• Testing

• Refactoring

• Pair Programming

• Collective Ownership

• Continuous
Integration

• 40-hour Week

• On-site Customer

• Coding Standards


