Software Life Cycles

Kenneth M. Anderson
Foundations of Software Engineering

CSCIT 5828 - Spring Semester, 2001
(Guest Lecture)

Today’s Lecture

* Discuss Software Life Cycles
— Why do we need them?

— What types exist?
¢ Code and Fix (hacking)
* Waterfall
* Iterative
* Rapid Prototype
* Spiral
— Advantages and Disadvantages

March 16, 2001 © Kenneth M. Anderson, 2001

Background

* In Software Engineering:
“Process is King”
— We want our activities to be coordinated and planned,
e.g. “engineered”
— The reason? A high quality process should increase our
ability to create a high quality product

March 16, 2001 © Kenneth M. Anderson, 2001

Use of Process

* Car Assembly
— An assembly line is a process for producing cars.

— A significant amount of work goes into not just
designing a car but into designing the process used to
build that car

* Software Engineering

— The same principles can be applied to developing a
software system

March 16, 2001 © Kenneth M. Anderson, 2001

Key Difference

* There is a key difference between software engineering
and car assembly, however.

* In car assembly, design time for the car is “short”, the
majority of the work lies in manufacturing

— In software engineering, we face the reverse situation, creating
new copies of a software system is trivial, it’s the design that is
hard

— Thus, there will be significant differences in the processes used to
develop software

March 16,2001 © Kenneth M. Anderson, 2001

Software Life Cycle

* A series of steps that organizes the development of
a software product

* Duration can be from days to years

¢ Consists of
people!

overall process

intermediate products

stages of the process

March 16, 2001 © Kenneth M. Anderson, 2001 6

Phases of a Software Life Cycle

¢ Standard Phases

Requirements Analysis & Specification

Design

Implementation and Integration

Operation and Maintenance

Change in Requirements

Testing throughout!
* Phases promote manageability and provide organization

March 16, 2001 © Kenneth M. Anderson, 2001

Requirements Analysis and
Specification

* Problem Definition —> Requirements Specification
— determine exactly what client wants and identify constraints
— develop a contract with client

— Specify the product’s task explicitly
» Difficulties

— client asks for wrong product
— client is computer/software illiterate
— specifications may be ambiguous, inconsistent, incomplete
e Validation
— extensive reviews to check that requirements satisfy client needs
— look for ambiguity, consistency, incompleteness
— check for feasibility, testability
— develop system/acceptance test plan

March 16, 2001 © Kenneth M. Anderson, 2001 8

Design

* Requirements Specification —> Design
— develop architectural design (system structure)
¢ decompose software into modules with module interfaces
— develop detailed design (module specifications)
* select algorithms and data structures
— maintain record of design decisions
¢ Difficulties
— miscommunication between module designers
— design may be inconsistent, incomplete, ambiguous
¢ Verification
— extensive design reviews (inspections) to determine that design conforms to requirements
— check module interactions
— develop integration test plan

March 16, 2001 © Kenneth M. Anderson, 2001

Implementation and Integration

* Design —> Implementation
— implement modules and verify they meet their specifications
— combine modules according to architectural design

e Difficulties

— module interaction errors

— order of integration has a critical influence on product quality

* Verification and Testing

— code reviews to determine that implementation conforms to requirements and design
— develop unit/module test plan: focus on individual module functionality
— develop integration test plan: focus on module interfaces

— develop system test plan: focus on requirements and determine whether product as a whole
functions correctly

March 16, 2001 © Kenneth M. Anderson, 2001 10

Operation and Maintenance

* Operation —> Change
— maintain software after (and during) user operation
— determine whether product as a whole still functions correctly
* Difficulties
— design not extensible
— lack of up-to-date documentation
— personnel turnover
* Verification and Testing
— review to determine that change is made correctly and all documentation updated
— test to determine that change is correctly implemented

— test to determine that no inadvertent changes were made to compromise system
functionality

March 16, 2001 © Kenneth M. Anderson, 2001

Code-and-Fix (Not a Life Cycle!)

Build First
Version

o — — —

Modify until
Client is satisfied |, :
| |

ey | Operations Mode

v

Retirement

March 16, 2001 © Kenneth M. Anderson, 2001 12

Discussion of Code-and-Fix

e Useful for “hacking”

* Problems become apparent in any serious coding
effort

— No process for things like versioning, configuration
management, testing, etc.

— Difficult to coordinate activities of multiple
programmers

— Non-technical users cannot explain how the program
should work

— Programmers do not know or understand user needs

March 16, 2001 © Kenneth M. Anderson, 2001 13

Waterfall Model

e e Req. Change
equirements x
Verify N
= Design < - - !
Verify . |
Implementation
7 S i Xl P RS,
Test
v i
Operations
Retirement
March 16, 2001 © Kenneth M. Anderson, 2001 14

Discussion of Waterfall

* Proposed in early 70s
* Widely used (even today)
* Advantages

— Measurable Progress

— Experience applying steps in past projects can be used
in estimating duration of steps in future projects

— Produces software artifacts that can be re-used in other
projects

March 16, 2001 © Kenneth M. Anderson, 2001 15

Waterfall, continued

* The original waterfall model had disadvantages because it
disallowed iteration
— Inflexability
Monolithic
— Estimation is difficult
Requirements change over time
Maintenance not handled well
* These are problems with other life cycle models as well

¢ The “waterfall with feedback” model was created in
response
— Our slides show this model

March 16, 2001 © Kenneth M. Anderson, 2001 16

Rapid Prototyping

Rapid Prototype «

Verify N

Req. Change

A

A

Design

A

Verify

Implementation

March 16, 2001

Test

© Kenneth M. Anderson, 2001

Operations

'

Retirement

17

Discussion of Rapid Prototyping

* Prototypes are used to develop regs. spec.
* Once reqs. are known, waterfall is used

* Prototypes are discarded once design begins
— Prototypes should not be used as a basis for implementation.
Prototyping tools do not create production quality code
— In addition, customer needs to be “educated” about prototypes

* they need to know that prototypes are used just to answer
requirements-related questions

* otherwise, they get impatient!

March 16, 2001 © Kenneth M. Anderson, 2001 18

Incremental

Requirements

Verify

—* Arch. Design

Verify

For each build:
Perform detailed
design, implement.

March 16, 2001

Test. Deliver. j |

»

© Kenneth M. Anderson, 2001

Operations

'

Retirement

Discussion of Incremental Model

e Used by Microsoft

— Programs are built everyday by the build
manager

— If a programmer checks in code that “breaks the
build” they become the new build manager!
— Iterations are classified according to features

* e.g. features 1 and 2 are being worked on in this
iteration, features 3 and 4 are next

March 16, 2001 © Kenneth M. Anderson, 2001 20

The Spiral Model [Boehm,1988]

Cumulative
cost

‘ngrcss

Determine through

Evaluate alternatives,
steps

objectives, idcnli‘[\y\} resolve risks
o

Commit
Review

partition

Plan next pha\sc.~E= i, Develop, verify

next-level product

March 16, 2001 © Kenneth M. Anderson, 2001 21

Discussion of Spiral Model

e Similar to Iterative Model, but:

— each iteration is driven by “risk management”
* Determine objectives and current status
* Identify Risks
 Next iteration addresses highest risk items
* Repeat

March 16, 2001 © Kenneth M. Anderson, 2001 22

Summary

» Life cycles make software development
predictable

repeatable

measurable

efficient

* High-quality processes should lead to high-quality
products

— at least it improves the odds of producing good
software

March 16, 2001 © Kenneth M. Anderson, 2001 23

