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Today’s Lecture

• Discuss Software Life Cycles
– Why do we need them?

– What types exist?
• Code and Fix (hacking)

• Waterfall

• Iterative

• Rapid Prototype

• Spiral

– Advantages and Disadvantages
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Background

• In Software Engineering:
“Process is King”

– We want our activities to be coordinated and planned,
e.g. “engineered”

– The reason? A high quality process should increase our
ability to create a high quality product
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Use of Process

• Car Assembly
– An assembly line is a process for producing cars.

– A significant amount of work goes into not just
designing a car but into designing the process used to
build that car

• Software Engineering
– The same principles can be applied to developing a

software system
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Key Difference

• There is a key difference between software engineering
and car assembly, however.

• In car assembly, design time for the car is “short”, the
majority of the work lies in manufacturing
– In software engineering, we face the reverse situation, creating

new copies of a software system is trivial, it’s the design that is
hard

– Thus, there will be significant differences in the processes used to
develop software
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Software Life Cycle

• A series of steps that organizes the development of
a software product

• Duration can be from days to years

• Consists of
– people!

– overall process

– intermediate products

– stages of the process
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Phases of a Software Life Cycle

• Standard Phases
– Requirements Analysis & Specification

– Design

– Implementation and Integration

– Operation and Maintenance

– Change in Requirements

– Testing throughout!

• Phases promote manageability and provide organization
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Requirements Analysis and
Specification

• Problem Definition —> Requirements Specification
– determine exactly what client wants and identify constraints

– develop a contract with client

– Specify the product’s task explicitly

• Difficulties
– client asks for wrong product

– client is computer/software illiterate

– specifications may be ambiguous, inconsistent, incomplete

• Validation
– extensive reviews to check that requirements satisfy client needs

– look for ambiguity, consistency, incompleteness

– check for feasibility, testability

– develop system/acceptance test plan
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Design

• Requirements Specification —> Design
– develop architectural design (system structure)

• decompose software into modules with module interfaces

– develop detailed design (module specifications)
• select algorithms and data structures

– maintain record of design decisions

• Difficulties
–  miscommunication between module designers

–  design may be inconsistent, incomplete, ambiguous

• Verification
– extensive design reviews (inspections) to determine that design conforms to requirements

– check module interactions

– develop integration test plan
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Implementation and Integration

• Design —> Implementation
– implement modules and verify they meet their specifications

– combine modules according to architectural design

• Difficulties
–  module interaction errors

–  order of integration has a critical influence on product quality

• Verification and Testing
– code reviews to determine that implementation conforms to requirements and design

– develop unit/module test plan: focus on individual module functionality

– develop integration test plan: focus on module interfaces

– develop system test plan: focus on requirements and determine whether product as a whole
functions correctly
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Operation and Maintenance

• Operation —> Change
– maintain software after (and during) user operation

– determine whether product as a whole still functions correctly

• Difficulties
– design not extensible

– lack of up-to-date documentation

– personnel turnover

• Verification and Testing
– review  to determine that change is made correctly and all documentation updated

– test to determine that change is correctly implemented

– test to determine that no inadvertent changes were made to compromise system
functionality
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Build First
Version

Retirement

Operations Mode

Modify until
Client is satisfied

Code-and-Fix (Not a Life Cycle!)
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Discussion of Code-and-Fix

• Useful for “hacking”
• Problems become apparent in any serious coding

effort
– No process for things like versioning, configuration

management, testing, etc.
– Difficult to coordinate activities of multiple

programmers
– Non-technical users cannot explain how the program

should work
– Programmers do not know or understand user needs
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Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

Waterfall Model

March 16, 2001 © Kenneth M. Anderson, 2001 15

Discussion of Waterfall

• Proposed in early 70s

• Widely used (even today)

• Advantages
– Measurable Progress

– Experience applying steps in past projects can be used
in estimating duration of steps in future projects

– Produces software artifacts that can be re-used in other
projects
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Waterfall, continued

• The original waterfall model had disadvantages because it
disallowed iteration
– Inflexability
– Monolithic
– Estimation is difficult
– Requirements change over time
– Maintenance not handled well

• These are problems with other life cycle models as well
• The “waterfall with feedback” model was created in

response
– Our slides show this model
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Rapid Prototyping

Rapid Prototype

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change
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Discussion of Rapid Prototyping

• Prototypes are used to develop reqs. spec.

• Once reqs. are known, waterfall is used

• Prototypes are discarded once design begins
– Prototypes should not be used as a basis for implementation.

Prototyping tools do not create production quality code

– In addition, customer needs to be “educated” about prototypes
• they need to know that prototypes are used just to answer

requirements-related questions

• otherwise, they get impatient!
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For each build:
Perform detailed
design, implement.
Test. Deliver.

Incremental
Requirements

Verify

Retirement

Operations

Verify

Arch. Design
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Discussion of Incremental Model

• Used by Microsoft
– Programs are built everyday by the build

manager

– If a programmer checks in code that “breaks the
build” they become the new build manager!

– Iterations are classified according to features
• e.g. features 1 and 2 are being worked on in this

iteration, features 3 and 4 are next
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The Spiral Model [Boehm,1988]  
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Discussion of Spiral Model

• Similar to Iterative Model, but:
– each iteration is driven by “risk management”

• Determine objectives and current status

• Identify Risks

• Next iteration addresses highest risk items

• Repeat

March 16, 2001 © Kenneth M. Anderson, 2001 23

Summary

• Life cycles make software development
– predictable

– repeatable

– measurable

– efficient

• High-quality processes should lead to high-quality
products
– at least it improves the odds of producing good

software


