
Software Life Cycles

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2001

(Guest Lecture)

March 16, 2001 © Kenneth M. Anderson, 2001 2

Today’s Lecture

• Discuss Software Life Cycles
– Why do we need them?

– What types exist?
• Code and Fix (hacking)

• Waterfall

• Iterative

• Rapid Prototype

• Spiral

– Advantages and Disadvantages

March 16, 2001 © Kenneth M. Anderson, 2001 3

Background

• In Software Engineering:
“Process is King”

– We want our activities to be coordinated and planned,
e.g. “engineered”

– The reason? A high quality process should increase our
ability to create a high quality product

March 16, 2001 © Kenneth M. Anderson, 2001 4

Use of Process

• Car Assembly
– An assembly line is a process for producing cars.

– A significant amount of work goes into not just
designing a car but into designing the process used to
build that car

• Software Engineering
– The same principles can be applied to developing a

software system

March 16, 2001 © Kenneth M. Anderson, 2001 5

Key Difference

• There is a key difference between software engineering
and car assembly, however.

• In car assembly, design time for the car is “short”, the
majority of the work lies in manufacturing
– In software engineering, we face the reverse situation, creating

new copies of a software system is trivial, it’s the design that is
hard

– Thus, there will be significant differences in the processes used to
develop software

March 16, 2001 © Kenneth M. Anderson, 2001 6

Software Life Cycle

• A series of steps that organizes the development of
a software product

• Duration can be from days to years

• Consists of
– people!

– overall process

– intermediate products

– stages of the process

March 16, 2001 © Kenneth M. Anderson, 2001 7

Phases of a Software Life Cycle

• Standard Phases
– Requirements Analysis & Specification

– Design

– Implementation and Integration

– Operation and Maintenance

– Change in Requirements

– Testing throughout!

• Phases promote manageability and provide organization

March 16, 2001 © Kenneth M. Anderson, 2001 8

Requirements Analysis and
Specification

• Problem Definition —> Requirements Specification
– determine exactly what client wants and identify constraints

– develop a contract with client

– Specify the product’s task explicitly

• Difficulties
– client asks for wrong product

– client is computer/software illiterate

– specifications may be ambiguous, inconsistent, incomplete

• Validation
– extensive reviews to check that requirements satisfy client needs

– look for ambiguity, consistency, incompleteness

– check for feasibility, testability

– develop system/acceptance test plan

March 16, 2001 © Kenneth M. Anderson, 2001 9

Design

• Requirements Specification —> Design
– develop architectural design (system structure)

• decompose software into modules with module interfaces

– develop detailed design (module specifications)
• select algorithms and data structures

– maintain record of design decisions

• Difficulties
– miscommunication between module designers

– design may be inconsistent, incomplete, ambiguous

• Verification
– extensive design reviews (inspections) to determine that design conforms to requirements

– check module interactions

– develop integration test plan

March 16, 2001 © Kenneth M. Anderson, 2001 10

Implementation and Integration

• Design —> Implementation
– implement modules and verify they meet their specifications

– combine modules according to architectural design

• Difficulties
– module interaction errors

– order of integration has a critical influence on product quality

• Verification and Testing
– code reviews to determine that implementation conforms to requirements and design

– develop unit/module test plan: focus on individual module functionality

– develop integration test plan: focus on module interfaces

– develop system test plan: focus on requirements and determine whether product as a whole
functions correctly

March 16, 2001 © Kenneth M. Anderson, 2001 11

Operation and Maintenance

• Operation —> Change
– maintain software after (and during) user operation

– determine whether product as a whole still functions correctly

• Difficulties
– design not extensible

– lack of up-to-date documentation

– personnel turnover

• Verification and Testing
– review to determine that change is made correctly and all documentation updated

– test to determine that change is correctly implemented

– test to determine that no inadvertent changes were made to compromise system
functionality

March 16, 2001 © Kenneth M. Anderson, 2001 12

Build First
Version

Retirement

Operations Mode

Modify until
Client is satisfied

Code-and-Fix (Not a Life Cycle!)

March 16, 2001 © Kenneth M. Anderson, 2001 13

Discussion of Code-and-Fix

• Useful for “hacking”
• Problems become apparent in any serious coding

effort
– No process for things like versioning, configuration

management, testing, etc.
– Difficult to coordinate activities of multiple

programmers
– Non-technical users cannot explain how the program

should work
– Programmers do not know or understand user needs

March 16, 2001 © Kenneth M. Anderson, 2001 14

Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

Waterfall Model

March 16, 2001 © Kenneth M. Anderson, 2001 15

Discussion of Waterfall

• Proposed in early 70s

• Widely used (even today)

• Advantages
– Measurable Progress

– Experience applying steps in past projects can be used
in estimating duration of steps in future projects

– Produces software artifacts that can be re-used in other
projects

March 16, 2001 © Kenneth M. Anderson, 2001 16

Waterfall, continued

• The original waterfall model had disadvantages because it
disallowed iteration
– Inflexability
– Monolithic
– Estimation is difficult
– Requirements change over time
– Maintenance not handled well

• These are problems with other life cycle models as well
• The “waterfall with feedback” model was created in

response
– Our slides show this model

March 16, 2001 © Kenneth M. Anderson, 2001 17

Rapid Prototyping

Rapid Prototype

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

March 16, 2001 © Kenneth M. Anderson, 2001 18

Discussion of Rapid Prototyping

• Prototypes are used to develop reqs. spec.

• Once reqs. are known, waterfall is used

• Prototypes are discarded once design begins
– Prototypes should not be used as a basis for implementation.

Prototyping tools do not create production quality code

– In addition, customer needs to be “educated” about prototypes
• they need to know that prototypes are used just to answer

requirements-related questions

• otherwise, they get impatient!

March 16, 2001 © Kenneth M. Anderson, 2001 19

For each build:
Perform detailed
design, implement.
Test. Deliver.

Incremental
Requirements

Verify

Retirement

Operations

Verify

Arch. Design

March 16, 2001 © Kenneth M. Anderson, 2001 20

Discussion of Incremental Model

• Used by Microsoft
– Programs are built everyday by the build

manager

– If a programmer checks in code that “breaks the
build” they become the new build manager!

– Iterations are classified according to features
• e.g. features 1 and 2 are being worked on in this

iteration, features 3 and 4 are next

March 16, 2001 © Kenneth M. Anderson, 2001 21

The Spiral Model [Boehm,1988]

Concept ofN

Operation

Requirements
Plan

RequirementsN

OAC

RiskN

Assessment

Risk
 Ite

m Set

Risk
 M

anagem
ent P

lan

Requirements

RiskN

Control

RequirementsN
Validation

Abstract SpecificationN
 Plan

 AbstractN

SpecifcationN
OAC

RiskN

Assessment

RiskN

Control

AbstractN
Specification

Abstract SpecificationN
Validation

Concrete SpecificationN
 Plan

 ConcreteN

SpecificationN
OAC

ConcreteN
Specification

ConcreteN

Specification ValidationN
and Verification

Software

Development Plan

RiskN

Assessment

RiskN

Control

ProgressN

throughN
steps

Cumulative
cost

Evaluate alternatives,N

identify, resolve risks

Develop, verifyN

next-level product

Plan next phases

Commit
Review

partition

DetermineN

objectives,N
alternatives,N
constraintsN
(OAC)

March 16, 2001 © Kenneth M. Anderson, 2001 22

Discussion of Spiral Model

• Similar to Iterative Model, but:
– each iteration is driven by “risk management”

• Determine objectives and current status

• Identify Risks

• Next iteration addresses highest risk items

• Repeat

March 16, 2001 © Kenneth M. Anderson, 2001 23

Summary

• Life cycles make software development
– predictable

– repeatable

– measurable

– efficient

• High-quality processes should lead to high-quality
products
– at least it improves the odds of producing good

software

