
The Mythical Man-Month

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2001

(Guest Lecture)

March 12, 2001 © Kenneth M. Anderson, 2001 2

Today’s Lecture

• Discuss first four chapters of The Mythical
Man-Month
– The Tar Pit

– The Mythical Man-Month

– The Surgical Team

– Aristocracy, Democracy, and System Design

March 12, 2001 © Kenneth M. Anderson, 2001 3

Background of the Book

• Fred Brooks
– 1964 Became the manager for Operating

System/360 for IBM
• Previous experience was in hardware design

– 1956-1963

– OS/360 “was late, took more memory than was
planned, costs were several times the estimate,
and it did not perform very well until several
releases after the first.”

March 12, 2001 © Kenneth M. Anderson, 2001 4

Background, continued

• The book is the result of analyzing the
OS/360 experience:
– What were the management and technical

lessons to be learned?

– Why was the process different from the 360
hardware development effort?

• Brooks is now a professor at the University
of North Carolina, Chapel Hill



March 12, 2001 © Kenneth M. Anderson, 2001 5

The Tar Pit

• Developing large systems is “sticky”
– Projects emerge from the tar pit with running

systems
• But most missed goals, schedules, and budgets

• “No one thing seems to cause the difficulty--any
particular paw can be pulled away. But the
accumulation of simultaneous and interacting
factors brings slower and slower motion.”

March 12, 2001 © Kenneth M. Anderson, 2001 6

The Tar Pit, continued

• The analogy is meant to convey that
– It is hard to discern the nature of the problem(s)

facing software development

• Brooks begins by examining the basis of
software development
– e.g. system programming

March 12, 2001 © Kenneth M. Anderson, 2001 7

Evolution of a Program

Program

Programming
Product

Programming
System

Programming
Systems
Product

x3

x3

x9

March 12, 2001 © Kenneth M. Anderson, 2001 8

What makes programming fun?

• Sheer joy of creation

• Pleasure of creating something useful to
other people

• Creating (and solving) puzzles

• Life-Long Learning

• Working in a tractable medium
– e.g. Software is malleable



March 12, 2001 © Kenneth M. Anderson, 2001 9

What’s not so fun about
programming?

• You have to be perfect!

• You are rarely in complete control of the
project

• Design is fun; debugging is just work

• Testing takes too long!

• The program may be obsolete when
finished!

March 12, 2001 © Kenneth M. Anderson, 2001 10

Why are software project’s late?

• Estimating techniques are poorly developed
• Our techniques confuse effort with progress

– The Mythical Man-Month
• Since we are uncertain of our estimates, we don’t

stick to them!
• Progress is poorly monitored!
• When slippage is recognized, we add people

– “Like adding gasoline to a fire!”

March 12, 2001 © Kenneth M. Anderson, 2001 11

Optimism

• “All programmers are optimists!”
– “All will go well” with the project

• Thus we don’t plan for slippage!

– However, with the sequential nature of our tasks, the
chance is small that all will go well!

• One reason for optimism is the nature of creativity
– idea, implementation, and interaction
– The medium of creation constrains our ideas

• In software, the medium is infinitely tractable, we thus expect few
problems in implementation, leading to our optimism

March 12, 2001 © Kenneth M. Anderson, 2001 12

The Mythical Man-Month

• Cost does indeed vary as the product of the
number of men and the number of months
– Progress does not!

– The unit of the man-month implies that men
and months are interchangeable

• However, this is only true when a task can be
partitioned among many workers with no
communication among them!



March 12, 2001 © Kenneth M. Anderson, 2001 13

The Man-Month, continued

• When a task is sequential, more effort has
no effect on the schedule
– “The bearing of a child takes nine months, no

matter how many women are assigned!”

– Many tasks in software engineering have
sequential constraints!

March 12, 2001 © Kenneth M. Anderson, 2001 14

The Man-Month, continued

• Most tasks require communication among workers

• communication consists of
– training

– sharing information (intercommunication)

• Training affects effort at worst linearly

• Intercommunication adds n(n-1)/2 to effort
– if each worker must communicate with every other

worker

March 12, 2001 © Kenneth M. Anderson, 2001 15

Intercommunication Effort

• 2 workers

• 3

• 4

• 5

• 6

• 7

• 1 path

• 3 paths

• 6 paths

• 10 paths

• 15 paths

• 21 paths

March 12, 2001 © Kenneth M. Anderson, 2001 16

Comparison Graphs

Months

Workers
no communication with communication

“Adding more people then lengthens, not shortens, the schedule!”



March 12, 2001 © Kenneth M. Anderson, 2001 17

Scheduling

• Brook’s rule of thumb
– 1/3 planning

– 1/6 coding

– 1/4 component test

– 1/4 system test

• More time devoted to
planning, half to
testing!

• In looking at other
projects, Brooks found
that few planned for
50% testing, but most
spent 50% of their
time testing!
– Many of these projects

were on schedule until
testing began!

March 12, 2001 © Kenneth M. Anderson, 2001 18

The Surgical Team
(Chapter 3)

• Or
– How should the development team be

arranged?

• The problem
– Good programmers are much better than poor

programmers
• typically 10 times better in productivity

• typically 5 times better in terms of program elegance

March 12, 2001 © Kenneth M. Anderson, 2001 19

The dilemma of team size

• Consider the following example
– 200-person project with 25 experienced managers

– Previous slide argues for firing the 175 workers and use
the 25 managers as the team!

• However, this is still bigger than “the ideal” small team size of
10 people (general consensus)

– However, the original team was too small to tackle
large systems

• OS/360 had over 1000 people working on it; consumed 5000
man-years of design, construction, and documentation!

March 12, 2001 © Kenneth M. Anderson, 2001 20

Two needs to be reconciled

• For efficiency and conceptual integrity
– a small team is preferred

• To tackle large systems
– considerable resources are needed

• One solution
– Harlan Mill’s Surgical Team approach

• One person performs the work
– all others perform support tasks



March 12, 2001 © Kenneth M. Anderson, 2001 21

The Proposed Team

• The surgeon
– The chief programmer

• The co-pilot
– Like the surgeon but less

experienced

• The administrator
– Relieves the surgeon of

administrative tasks

• The editor
– Proof-edits documentation

• Two secretaries
– Support admin and editor

• The program clerk
– Probably obsolete today

• The toolsmith
– Supports the work of the

surgeon

• The tester

• The language lawyer

March 12, 2001 © Kenneth M. Anderson, 2001 22

How is this different?

• Normally, work is divided equally
– Now only surgeon and copilot divide the work

• Normally, each person has equal say
– The surgeon is the absolute authority

• Note communication paths are reduced
– Normally 10 people => 45 paths

– Surgical Team => at most 13 (See Fig. 3-1.)

March 12, 2001 © Kenneth M. Anderson, 2001 23

How does this scale?

• Reconsider the 200 person team
– Communication paths => 19,900!

• Create 20, ten-person surgical teams
• Now, only 20 surgeons must work together

– 20 people => 190 paths
• Two orders of magnitude less!

• Key problem is ensuring conceptual
integrity of the design

March 12, 2001 © Kenneth M. Anderson, 2001 24

Conceptual Integrity

• Brooks example => Cathedrals
– Many cathedrals consist of contrasting design ideas
– The Reims Cathedral was the result of eight generations

of builders repressing their own ideas and desires to
build a cathedral that embodies the key design elements
of the original architect!

• With respect to software
– Design by too many people results in conceptual

disunity of a system which makes the program hard to
understand and use.



March 12, 2001 © Kenneth M. Anderson, 2001 25

Conceptual Integrity

• Brooks considers it the most important
consideration in system design
– Better to leave functionality out of a system if it causes

the conceptual integrity of the design to break

• Questions
– How is conceptual integrity achieved?
– Are system architects raised to the level of aristocracy?
– How does one keep architects’ designs realistic?
– How does one ensure that a design is correctly

implemented?

March 12, 2001 © Kenneth M. Anderson, 2001 26

Function vs. Complexity

• The key test to a system’s design is the ratio of
functionality to conceptual complexity
– Ease-of-use is enhanced only if the functionality

provides more power than it takes to learn (and
remember) how to use it in the first place!

– Neither function or simplicity alone is good enough
• OS/360 had lots of functionality
• PDP-10 has lots of simplicity
• Both reached only half of the target!

• These can be achieved with conceptual integrity!

March 12, 2001 © Kenneth M. Anderson, 2001 27

Architects as Aristocrats

• Conceptual Integrity requires that the design be
the product of one mind

• The architect (or surgeon) has ultimate authority
(and ultimate responsibility)!
– Does this imply too much power for the architects?

• In one sense, yes, but ease-of-use of a system comes from
conceptual integrity!

• In another sense, no, the architect sets the structure of the
system, developers can then be creative in how the system is
implemented!


