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Today’s Lecture

• Discuss first four chapters of The Mythical
Man-Month
– The Tar Pit

– The Mythical Man-Month

– The Surgical Team

– Aristocracy, Democracy, and System Design
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Background of the Book

• Fred Brooks
– 1964 Became the manager for Operating

System/360 for IBM
• Previous experience was in hardware design

– 1956-1963

– OS/360 “was late, took more memory than was
planned, costs were several times the estimate,
and it did not perform very well until several
releases after the first.”
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Background, continued

• The book is the result of analyzing the
OS/360 experience:
– What were the management and technical

lessons to be learned?

– Why was the process different from the 360
hardware development effort?

• Brooks is now a professor at the University
of North Carolina, Chapel Hill
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The Tar Pit

• Developing large systems is “sticky”
– Projects emerge from the tar pit with running

systems
• But most missed goals, schedules, and budgets

• “No one thing seems to cause the difficulty--any
particular paw can be pulled away. But the
accumulation of simultaneous and interacting
factors brings slower and slower motion.”
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The Tar Pit, continued

• The analogy is meant to convey that
– It is hard to discern the nature of the problem(s)

facing software development

• Brooks begins by examining the basis of
software development
– e.g. system programming
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What makes programming fun?

• Sheer joy of creation

• Pleasure of creating something useful to
other people

• Creating (and solving) puzzles

• Life-Long Learning

• Working in a tractable medium
– e.g. Software is malleable
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What’s not so fun about
programming?

• You have to be perfect!

• You are rarely in complete control of the
project

• Design is fun; debugging is just work

• Testing takes too long!

• The program may be obsolete when
finished!
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Why are software project’s late?

• Estimating techniques are poorly developed
• Our techniques confuse effort with progress

– The Mythical Man-Month
• Since we are uncertain of our estimates, we don’t

stick to them!
• Progress is poorly monitored!
• When slippage is recognized, we add people

– “Like adding gasoline to a fire!”
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Optimism

• “All programmers are optimists!”
– “All will go well” with the project

• Thus we don’t plan for slippage!

– However, with the sequential nature of our tasks, the
chance is small that all will go well!

• One reason for optimism is the nature of creativity
– idea, implementation, and interaction
– The medium of creation constrains our ideas

• In software, the medium is infinitely tractable, we thus expect few
problems in implementation, leading to our optimism
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The Mythical Man-Month

• Cost does indeed vary as the product of the
number of men and the number of months
– Progress does not!

– The unit of the man-month implies that men
and months are interchangeable

• However, this is only true when a task can be
partitioned among many workers with no
communication among them!
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The Man-Month, continued

• When a task is sequential, more effort has
no effect on the schedule
– “The bearing of a child takes nine months, no

matter how many women are assigned!”

– Many tasks in software engineering have
sequential constraints!
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The Man-Month, continued

• Most tasks require communication among workers

• communication consists of
– training

– sharing information (intercommunication)

• Training affects effort at worst linearly

• Intercommunication adds n(n-1)/2 to effort
– if each worker must communicate with every other

worker
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Intercommunication Effort

• 2 workers

• 3

• 4

• 5

• 6

• 7

• 1 path

• 3 paths

• 6 paths

• 10 paths

• 15 paths

• 21 paths
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Comparison Graphs

Months

Workers
no communication with communication

“Adding more people then lengthens, not shortens, the schedule!”
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Scheduling

• Brook’s rule of thumb
– 1/3 planning

– 1/6 coding

– 1/4 component test

– 1/4 system test

• More time devoted to
planning, half to
testing!

• In looking at other
projects, Brooks found
that few planned for
50% testing, but most
spent 50% of their
time testing!
– Many of these projects

were on schedule until
testing began!
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The Surgical Team
(Chapter 3)

• Or
– How should the development team be

arranged?

• The problem
– Good programmers are much better than poor

programmers
• typically 10 times better in productivity

• typically 5 times better in terms of program elegance
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The dilemma of team size

• Consider the following example
– 200-person project with 25 experienced managers

– Previous slide argues for firing the 175 workers and use
the 25 managers as the team!

• However, this is still bigger than “the ideal” small team size of
10 people (general consensus)

– However, the original team was too small to tackle
large systems

• OS/360 had over 1000 people working on it; consumed 5000
man-years of design, construction, and documentation!
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Two needs to be reconciled

• For efficiency and conceptual integrity
– a small team is preferred

• To tackle large systems
– considerable resources are needed

• One solution
– Harlan Mill’s Surgical Team approach

• One person performs the work
– all others perform support tasks
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The Proposed Team

• The surgeon
– The chief programmer

• The co-pilot
– Like the surgeon but less

experienced

• The administrator
– Relieves the surgeon of

administrative tasks

• The editor
– Proof-edits documentation

• Two secretaries
– Support admin and editor

• The program clerk
– Probably obsolete today

• The toolsmith
– Supports the work of the

surgeon

• The tester

• The language lawyer
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How is this different?

• Normally, work is divided equally
– Now only surgeon and copilot divide the work

• Normally, each person has equal say
– The surgeon is the absolute authority

• Note communication paths are reduced
– Normally 10 people => 45 paths

– Surgical Team => at most 13 (See Fig. 3-1.)
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How does this scale?

• Reconsider the 200 person team
– Communication paths => 19,900!

• Create 20, ten-person surgical teams
• Now, only 20 surgeons must work together

– 20 people => 190 paths
• Two orders of magnitude less!

• Key problem is ensuring conceptual
integrity of the design
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Conceptual Integrity

• Brooks example => Cathedrals
– Many cathedrals consist of contrasting design ideas
– The Reims Cathedral was the result of eight generations

of builders repressing their own ideas and desires to
build a cathedral that embodies the key design elements
of the original architect!

• With respect to software
– Design by too many people results in conceptual

disunity of a system which makes the program hard to
understand and use.
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Conceptual Integrity

• Brooks considers it the most important
consideration in system design
– Better to leave functionality out of a system if it causes

the conceptual integrity of the design to break

• Questions
– How is conceptual integrity achieved?
– Are system architects raised to the level of aristocracy?
– How does one keep architects’ designs realistic?
– How does one ensure that a design is correctly

implemented?
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Function vs. Complexity

• The key test to a system’s design is the ratio of
functionality to conceptual complexity
– Ease-of-use is enhanced only if the functionality

provides more power than it takes to learn (and
remember) how to use it in the first place!

– Neither function or simplicity alone is good enough
• OS/360 had lots of functionality
• PDP-10 has lots of simplicity
• Both reached only half of the target!

• These can be achieved with conceptual integrity!
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Architects as Aristocrats

• Conceptual Integrity requires that the design be
the product of one mind

• The architect (or surgeon) has ultimate authority
(and ultimate responsibility)!
– Does this imply too much power for the architects?

• In one sense, yes, but ease-of-use of a system comes from
conceptual integrity!

• In another sense, no, the architect sets the structure of the
system, developers can then be creative in how the system is
implemented!


