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Today’s Lecture

* Discuss aspects of the Extreme
Programming Model

— As presented in “Extreme Programming
Explained: Embrace Change” by Kent Beck
— Why “Extreme”?

* Extreme Programming (XP) takes commonsense
principles and practices to extreme levels
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The Basic Problem: Risk

e Beck argues that “risk” is the main problem
of software development
— Schedule slips
— Project canceled
— Business Changes
— Staff Turnovers

e XP is a methodology that “addresses risk at
all levels of the development process”™
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Four “Control” Variables

* Beck defines four control variables in software
development
— Cost
— Time
— Quality
— Scope

» External forces get to pick the values of any three
variables; the development team picks the value of
the fourth
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Four Variables, cont.

» Beck argues that the values of all four
variables need to be “visible”

— If stakeholders can see all four variables they
can consciously choose which variables to
control

— If they do not like the resulting value of the
fourth variable, they can choose to change the
inputs or choose to control a different set of
three
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“Scope” 1s Important

e Beck argues that “scope” is the most
important of the four

— By adjusting project scope based on the values
of the other three, you increase your chance of
success

 This perspective is backed by XP practices
— Practice making estimates

— Implement most important requirements first
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Cost Curve

* Cost of Change increases exponentially over time

— its cheaper to fix a bug if its caught early in the life
cycle

» XP is predicated on the notion that given the right
set of practices, the cost curve can be flattened

* This is a BIG assumption and may make adoption
of XP impossible for some organizations
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How to Flatten the Curve?

e Technology
— Objects

» Used correctly they provide extreme flexibility

— Object Databses

* Practices
— Simple Design, Automated Tests, Refactoring
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Learning to Drive

» Beck tells a story of learning to drive

— Mom first told him “line the car up in the middle of the

lane, straight toward the horizon”
* Beck drives car off the road!

— Mom then tells him “Driving is not about getting the
car going in the right direction. Driving is about
constantly paying attention, making a little correction
this way, a little correction that way.”

* This is the paradigm for XP. Change is constant
and must be constantly monitored and adapted to
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Four “Values” underlying XP

e Communication

— via several mediums: conversation, code, tests, metrics

Simplicity
— Beck says “Simplicity is not easy”
Feedback

— Tests as well as user feedback

* Courage

— XP resembles a hill-climbing algorithm; you can get
stuck in local optima
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Basic Principles

Rapid Feedback

Assume Simplicity

Incremental Change

Embracing Change
Quality Work
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Additional Principles

* Teach Learning * Work with People’s

e Small Initial Investment Instincts

* Play to Win * Accepted Responsibility

 Concrete Experiments * Local Adaptation

* Open, honest * Travel Light
communication * Honest Measurement
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XP Practices

e The Planning Game e Pair Programming

* Small Releases * Collective Ownership
e Metaphor e Continuous

e Simple Design Integration

o Testing * 40-hour Week

« Refactoring ¢ On-site Customer

e Coding Standards
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