Lecture 30
Extreme Programming

Kenneth M. Anderson
Foundations of Software Engineering
CSCI 5828 - Spring Semester, 2000

Today’s Lecture

* Discuss aspects of the Extreme
Programming Model

— As presented in “Extreme Programming
Explained: Embrace Change” by Kent Beck
— Why “Extreme”?

* Extreme Programming (XP) takes commonsense
principles and practices to extreme levels

May 4, 2000 'Kenn eth M. Anderson, 2000 2

The Basic Problem: Risk

e Beck argues that “risk” is the main problem
of software development
— Schedule slips
— Project canceled
— Business Changes
— Staff Turnovers

e XP is a methodology that “addresses risk at
all levels of the development process”™

May 4, 2000 'Kenn eth M. Anderson, 2000

Four “Control” Variables

* Beck defines four control variables in software
development
— Cost
— Time
— Quality
— Scope

» External forces get to pick the values of any three
variables; the development team picks the value of
the fourth

May 4, 2000 'Kenn eth M. Anderson, 2000 4




Four Variables, cont.

» Beck argues that the values of all four
variables need to be “visible”

— If stakeholders can see all four variables they
can consciously choose which variables to
control

— If they do not like the resulting value of the
fourth variable, they can choose to change the
inputs or choose to control a different set of
three

May 4, 2000 'Kenn eth M. Anderson, 2000

“Scope” 1s Important

e Beck argues that “scope” is the most
important of the four

— By adjusting project scope based on the values
of the other three, you increase your chance of
success

 This perspective is backed by XP practices
— Practice making estimates

— Implement most important requirements first

May 4, 2000 'Kenn eth M. Anderson, 2000

Cost Curve

* Cost of Change increases exponentially over time

— its cheaper to fix a bug if its caught early in the life
cycle

» XP is predicated on the notion that given the right
set of practices, the cost curve can be flattened

* This is a BIG assumption and may make adoption
of XP impossible for some organizations

May 4, 2000 'Kenn eth M. Anderson, 2000

How to Flatten the Curve?

e Technology
— Objects

» Used correctly they provide extreme flexibility

— Object Databses

* Practices
— Simple Design, Automated Tests, Refactoring

May 4, 2000 'Kenn eth M. Anderson, 2000




Learning to Drive

» Beck tells a story of learning to drive

— Mom first told him “line the car up in the middle of the

lane, straight toward the horizon”
* Beck drives car off the road!

— Mom then tells him “Driving is not about getting the
car going in the right direction. Driving is about
constantly paying attention, making a little correction
this way, a little correction that way.”

* This is the paradigm for XP. Change is constant
and must be constantly monitored and adapted to

May 4, 2000 'Kenn eth M. Anderson, 2000 9

Four “Values” underlying XP

e Communication

— via several mediums: conversation, code, tests, metrics

Simplicity
— Beck says “Simplicity is not easy”
Feedback

— Tests as well as user feedback

* Courage

— XP resembles a hill-climbing algorithm; you can get
stuck in local optima

May 4, 2000 'Kenn eth M. Anderson, 2000 10

Basic Principles

Rapid Feedback

Assume Simplicity

Incremental Change

Embracing Change
Quality Work

May 4, 2000 'Kenn eth M. Anderson, 2000 11

Additional Principles

* Teach Learning * Work with People’s

e Small Initial Investment Instincts

* Play to Win * Accepted Responsibility

 Concrete Experiments * Local Adaptation

* Open, honest * Travel Light
communication * Honest Measurement

May 4, 2000 'Kenn eth M. Anderson, 2000 12




XP Practices

e The Planning Game e Pair Programming

* Small Releases * Collective Ownership
e Metaphor e Continuous

e Simple Design Integration

o Testing * 40-hour Week

« Refactoring ¢ On-site Customer

e Coding Standards

May 4, 2000 'Kenn eth M. Anderson, 2000 13




