Lecture 22:
Software Architecture

Kenneth M. Anderson
Foundations of Software Engineering
CSCI 5828 - Spring Semester, 2000

Today’s Lecture

e Software Architecture
— Specification
— Examples

¢ Chemical Abstract Machine
e C2

April 6, 2000 © Kenneth M. Anderson, 2000

Architecture Specification

Design Elements

e Form
— Relationships among elements

Rationale

— Justification or arguments for choices of
elements and form

Constraints

— Properties and weights
April 6, 2000 © Kenneth M. Anderson, 2000

Design Elements

Processing Elements

— Components that transform data elements

Data Elements

— Information within a system

Connectors
— “Glue” that holds an architecture together
A Useful Metaphor

— Consider Polo, Water Polo, and Soccer: Similar in
processors and data, but differ in connectors

April 6, 2000 © Kenneth M. Anderson, 2000

Formal Specification

Structure (Form)

— How is the system organized?

Function
— What does the system compute?

Compatibility

— When is a system properly composed?

Specializations

— How are generic systems constrained?

April 6, 2000 © Kenneth M. Anderson, 2000 5

Benefit of Formal Specs?
Analysis

Consistency of Style Constraints

Satisfaction of Style by Architecture

Satisfaction of Requirements by
Architecture and of Architecture by
Implementation

Consistency of Structure and of Behavior
Effects of Changes

April 6, 2000 © Kenneth M. Anderson, 2000 6

Chemical Abstract Machine: CHAM

* A Convenient Metaphor

— Components are like molecules

— Systems are like solutions

— Molecules interact (i.e., react)

— Rules govern interaction

— State of system is like state of solution
* Mathematical Foundation

— Term rewriting

April 6, 2000 © Kenneth M. Anderson, 2000 7

CHAM Background

e Developed by Berry and Boudol in 1992

— Used as a generalized computation framework

— Has also been applied to parallel programming

e Applied to Software Architectures in 1995
— by Paola Inverardi and Alex Wolf
— extended to detect architectural mismatch: 1999

— extended to static checking of system behaviors
* to appear in ACM TOSEM

April 6, 2000 © Kenneth M. Anderson, 2000 8

CHAM Terminology

A CHAM is specified by

— defining molecules m1, m2, ...

— and solutions s0, s1, ... of molecules

* think of a “chemical solution”
* Molecules are basic elements of a system

* Solutions represent states
— and are represented by multisets of molecules

April 6, 2000 © Kenneth M. Anderson, 2000 9

CHAM Terminology, continued

» A solution is denoted as a comma separated
list of molecules enclosed in braces
—{ml,m2,...}
— A solution can contain sub-solutions

» CHAMSs evolve via transformation rules
—tl, t2, ...

— Transformations occur on solutions, thus
moving a CHAM from state to state

April 6, 2000 © Kenneth M. Anderson, 2000 10

Transformation Rules

A transformation rule can be applied to a
solution if it matches the rule’s condition

— A condition is specified as a premise of the rule
e Rules are enabled if their condition 1s met

— If multiple rules are enabled for a single
solution, one of the enabled rules is selected
non-deterministically to transform the solution

e nert solution: no enabled rules

April 6, 2000 © Kenneth M. Anderson, 2000 11

Specifying Software Architectures

e Using a CHAM to specify a software arch.
— Molecules define a system’s components
— Initial state of a system is defined by a solution
— Transformation rules define system behavior

* In addition, a set of solutions can be
specified to represent “legal” final states of
a system

April 6, 2000 © Kenneth M. Anderson, 2000 12

Example: Client-Server System

e Details
— Consists of single server and single client

— Server provides a single piece of data and the
client requests that piece of data

e [ater

— we will extend the example to two clients

April 6, 2000 © Kenneth M. Anderson, 2000 13

Example: Define syntax

* Syntax Operator ¢ indicates
~-M:=PICIDIMOM status of client/server
— P ::=Server | Client1

— C ::=serve(D) | request(D) * denotes that the server
is ready to serve a client

— serve(data) ¢ Server

— D ::=data
— Server ¢ serve(data)
¢ denotes that the server
is unable to serve a
client
April 6, 2000 © Kenneth M. Anderson, 2000 14

Example: Define Initial Solution

* s0

{serve(data) ¢ Server, request(data) ¢ Clientl }
e Server ready to serve data
 Client ready to request data

e Now we need transformation rules

April 6, 2000 © Kenneth M. Anderson, 2000 15

Example: Define Rules

e Tl
serve(d) O pl, request(d) ¢ p2 —
pl 0 serve(d), p2 ¢ request(d)

e T2
-pOc—>cOp

April 6, 2000 © Kenneth M. Anderson, 2000 16

Example: Execution

sO
{serve(data) ¢ Server, request(data) ¢ Clientl }

Apply tl to sO: end in sl
{Server ¢ serve(data) , Client] ¢ request(data)}

Apply t2 to s1: end in s2
{serve(data) 0 Server, Client] O request(data)}

And so on...

April 6, 2000 © Kenneth M. Anderson, 2000 17

Example: Add a client

e Modify Syntax
— P ::= Server | Clientl | Client2
e New sO

{serve(data) ¢ Server, request(data) ¢ Clientl,
request(data) ¢ Client2}

* With new client, we now have an element
of non-determinism

April 6, 2000 © Kenneth M. Anderson, 2000 18

Example: Add new rule

e t3

pOc—op
e And add a “final state” sN

— {serve(data) ¢ Server, Clientl, Client2}
* We can now start to ask questions:

— Can the system reach its final state?

— Are there any inert states?

— etc.
April 6, 2000 © Kenneth M. Anderson, 2000 19

Example: C2 Architectural Style

¢ Evolved from the Chiron User-Interface
Development System

* Components and Connectors

— each potentially with their own thread of control

¢ Constraint

— Components can “see” “up” an architecture not “down”
* Benefit: Subsystems are Substitutable
* Research being conducted on C2 today...

April 6, 2000 © Kenneth M. Anderson, 2000 20

