Lecture 10: Descriptive Specifications

Kenneth M. Anderson
Foundations of Software Engineering
CSCI 5828 - Spring Semester, 2000

Today s Lecture

¥ Introduce Descriptive Specifications
—E-R Diagrams (Semi-Formal)
—Axiomatic
—Algebraic
—Tour of the RAISE system

¥ Developed in Denmark
¥ Sold to European Manufacturing companies

¥ Using RAISE to create these types of specifications

—Has a full tool suite
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Descriptive Specifications

¥ Focuses on Properties

—Describes the desired properties of a system
rather than its desired behavior

¥ Formalisms
—Axiomatic (Logic)
—Algebraic
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Formalisms Provide Preciseness

¥ Use of Mathematical Formalisms

—Properties are specified precisely by building
on top of the precise mathematical syntax and
semantics of the underlying formalisms

¥ Mathematical Foundations
—Predicate logic, set theory, abstract algebra
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Entity-Relationship Diagrams

¥ A semi-formal notation for describing the
structure and relationships of data

—Akin to how Data Flow Diagrams are a semi-formal
notation for describing the operations that access and

manipulate data
¥ Problems
—Syntax and Semantics are not precisely defined

—Lack of Expressive power
¥ requires the use of natural language annotations
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Example ER Diagram

Student Class
| Name Enrolled_In Subject
[Age Course_ID
Sex Max_Enrollment

(taken from textbook page 200)
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ER Diagrams and UML

¥ ER Diagrams can be seen as precursors to
UML s Class Diagrams

¥ Differences
—eoperations and inheritance are added

¥ Advantages
—ER notation was never standardized, UML s
class diagrams provide a standard notation
¥ however, remember that they are both semi-formal
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Logic Specifications

¥ Vocabulary of Logical Expressions
—Variables, constants, predicates, functions
—Connectives: and (A), or (V), not (—),

implies (=), equivalent (=)

—Quantifiers: exists (3), for all (V)

¥ Combined with Vocabulary of Application
—Example: set operators (e, U, N, )
—Example: ADT operators (Push, IsFull, )
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Logic Specifications

¥ Examples
—x>yandy >z implies x>z
—for all x (exists y (y =x +2))
¥ Additional Notes

—Variables are either firee or bound

¥ A formula with all variables bound is called closed; closed
formulas are always either true or false

—Expressions are theories in the logic
—V &V amounts to theorem proving
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Creating Logic Specifications

¥ Helper Predicates and Functions
—Define the base properties of interest

¥ Used as a domain-specific vocabulary
—Modularize the specification
¥ e.g., defined in one spec; used in another
¥ Examples
—height(bob) = 72; tall(bob)
—for p: person (height(p)>60 implies tall(p))
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Logic Specification Techniques

¥ Preconditions and
Postconditions

¥ A property is defined
{Pre(il, 12,13, )}
—Textbook gives lots of P
examples on 204-205 {Post(ol, 02, 03, , il,

Assume <il, 12, 13, > 2,13, >}
are input values ¥ Example
Assume <ol, 02, 03, > fexists z (il =z * i2)}
are output values p
{ol =1l/i2}
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Logic Specification Techniques

¥ Invariants and Assertions

—Logic specs are used to assert properties of
portions of code as well

—For instance, to assert something that is always
true of a routine or to record the assumptions
about variables passed to a procedure

{n>0j}
procedure reverse (a: in out int_array; n: in int)
{for all i (1<=i<=n) implies (a(i) = old_a(n-i+1))}
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Algebraic Specifications

¥ Make use of heterogeneous algebra

—a collection of different sets on which several
operations are defined

—Traditional algebras are homogeneous, one set
and a several operations; e.g. integers

—Heterogeneous algebras contain multiple sets
Y e.g. length(ken ) =3
¥ Here we have the set of strings and integers with one
operation length defined
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RAISE

Rigorous Approach to Industrial Software Engineering

¥ A Method and a Language
¥ Specification Language: RSL

¥ Specifications Refined in Levels
—Associated consistency proof obligations
¥ Proofs of Properties Aided by Tools

February 17, 2000 'Kenn eth M. Anderson, 2000 14

Background Information

¥ In RAISE, they make use of a funny notion
of the domain and range of a function

¥ Each function consists of a set of tuples.
The domain is the set of elements that make
up the first element of each tuple; the range
is the set of elements that make up the
second set of each tuple
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Example
¥ S={} ¥ Empty Set
¥ S=S¢ [l |->2] ¥ S={(1,2)}
¥ Domain = {1}
¥ Range = {2}

¥ S=S° [3 |[>4] ¥ S={(1,2), (3,4)}
¥ Domain = {1, 3}
¥ Range = {2, 4}
¥ S=S¢\[1] ¥ S={(3,4)}
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RAISE Specification of POTS"

*Plain Old Telephone Service
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RAISE Specification of POTS

scheme POTS =
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RAISE Specification of POTS

scheme POTS =
class

type

value

variable
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RAISE Specification of POTS

scheme POTS =
class

type
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RAISE Specification of POTS

scheme POTS =
class
type Line,
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RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m’{On_Hook, Off_Hook},
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RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line m’ Line
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RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m {On_Hook, Off _Hook},
Calls = Line o Line
value
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RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line it Line
value  go_off_hook : Line — Unit,
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RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line m’Line
value  go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
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RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off _Hook},
Calls = Line m’ Line

value  go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line X Line — Bool,
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RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off _Hook},
Calls = Line m’ Line

value  go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line X Line — Bool,
end_call : Line — Unit
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RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line m’ Line

value  go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line x Line — Bool,
end_call : Line — Unit

variable

February 17, 2000 'Kenn eth M. Anderson, 2000 29

RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line o’ Line

value  go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line x Line — Bool,
end_call : Line — Unit

variable line_status : Status=[ L |-> On_Hook | L : Line ],
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RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off _Hook},
Calls = Line m’ Line

value  go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line X Line — Bool,
end_call : Line — Unit

variable line_status : Status = [ L |-> On_Hook | L : Line ],
active_calls : Calls = ]
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RAISE Specification of POTS
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RAISE Specification of POTS

axiom
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RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
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RAISE Specification of POTS

axiom forall L,L, L, : Line ¥
go_off_hook(L)

go_on_hook(L)
place_call(L,, L,)

end_call(L)
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RAISE Specification of POTS

axiom forall L,L |, L, : Line ¥
go_off_hook(L)
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RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status¢ [L |->
Off_Hook ],
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RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status® [L |->
Off_Hook ],

go_on_hook(L)
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RAISE Specification of POTS

axiom forall L,L, L, : Line ¥
go_off hook(L) post line_status = line_status¢ [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook ],
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RAISE Specification of POTS

axiom forall L,L |, L, : Line ¥
go_off_hook(L) post line_status = line_status¢ [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status® [L |->
On_Hook ],

place_call(L,,L,) as S
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RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status¢ [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook ],

place_call(L,,L,) as S
postS=1L, #L,
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RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status‘ [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook ],

place_call(L,,L,) as S
post S = L, #L, A active_calls = active_calls* [L, |->L, ]
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RAISE Specification of POTS

axiom forall L,L, L, : Line ¥
go_off hook(L) post line_status = line_status¢ [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook ],

place_call(L,,L,) as S
post S = L, # L, A active_calls = active_calls* [L, |->L, ]
A L, ¢ dom active_calls*
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RAISE Specification of POTS

axiom forall L,L |, L, : Line ¥
go_off hook(L) post line_status = line_status® [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook ],

place_call(L,,L,) as S
post S = L, #L, A active_calls = active_calls* [L, |->L,]
A L, ¢ dom active_calls® A L, ¢ rng active_calls®
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RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status¢ [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook ],

place_call(L,,L,) as S
post S = L,#L, A active_calls = active_calls¢ [L, |->L,]
A L, ¢ dom active_calls* A L, ¢ rng active_calls®
pre
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RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status‘ [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status® [L |->
On_Hook ],

place_call(L,,L,) as S
post S = L,#L, A active_calls = active_calls¢ [L, |->L,]
A L, ¢ dom active_calls* A L, ¢ rng active_calls®
pre line_status(L,) = Off_Hook
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RAISE Specification of POTS

axiom forall L,L, L, : Line ¥
go_off hook(L) post line_status = line_status¢ [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status® [L |->
On_Hook ],

place_call(L,,L,) as S
post S = L, # L, A active_calls = active_calls* [L, |->L,]
A L, ¢ dom active_calls® A L, ¢ rng active_calls®
pre line_status(L,) = Off_Hook

A L, ¢ dom active_calls
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RAISE Specification of POTS

axiom forall L,L |, L, : Line ¥
go_off hook(L) post line_status = line_status® [L |->
Off_Hook ],

go_on_hook(L) post line_status = line_status® [L |->
On_Hook ],

place_call(L,,L,) as S
post S = L, # L, A active_calls = active_calls* [L, |->L,]
A L, ¢ dom active_calls® A L, ¢ rng active_calls®
pre line_status(L,) = Off_Hook

A L, ¢ dom active calls A L, ¢ rng active_ calls
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RAISE Specification of POTS
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RAISE Specification of POTS

end_call(L)
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RAISE Specification of POTS

end_call(L)
post
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RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then
else

end
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RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*

then active_calls = active_calls* \{ L }
else

end
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RAISE Specification of POTS

end_call(L)
post if L € dom active_calls®

then active_calls = active_calls* \{ L }
else3L;: Line ¥

end
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RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then active_calls = active_calls® \{ L }
else3L;: Line ¥
active_calls® (L;) =L
end
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RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*

then active_calls = active_calls® \{ L }
else3L;: Line ¥

active_calls® (L;)=L A

active_calls = active_calls‘ \{ L; }
end
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RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then active_calls = active_calls‘ \{ L }
else3L;: Line ¥
active_calls® (L;)=L A
active_calls = active_calls‘ \{ L; }
end
pre
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RAISE Specification of POTS

end_call(L)
post if L € dom active_calls®
then active_calls = active_calls® \{ L }
else3L;: Line ¥
active_calls® (L;)=L A
active_calls = active_calls‘ \{ L; }
end
pre L € dom active_calls
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RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then active_calls = active_calls® \{ L }
else3L;: Line ¥
active_calls® (L;)=L A
active_calls = active_calls‘ \{ L; }
end
pre L e dom active_calls v L € rng active_calls
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RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then active_calls = active_calls® \{ L }
else3L;: Line ¥
active_calls® (L;)=L A
active_calls = active_calls‘ \{ L; }
end
pre L e dom active_calls v L € rng active_calls
end
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