Lecture 10: Descriptive Specifications

Kenneth M. Anderson
Foundations of Software Engineering
CSCI 5828 - Spring Semester, 2000

Today s Lecture

¥ Introduce Descriptive Specifications
—E-R Diagrams (Semi-Formal)
—Axiomatic
—Algebraic
—Tour of the RAISE system

¥ Developed in Denmark
¥ Sold to European Manufacturing companies

¥ Using RAISE to create these types of specifications

—Has a full tool suite

February 17, 2000 'Kenn eth M. Anderson, 2000

2

Descriptive Specifications

¥ Focuses on Properties

—Describes the desired properties of a system
rather than its desired behavior

¥ Formalisms
—Axiomatic (Logic)
—Algebraic

February 17, 2000 'Kenn eth M. Anderson, 2000

Formalisms Provide Preciseness

¥ Use of Mathematical Formalisms

—Properties are specified precisely by building
on top of the precise mathematical syntax and
semantics of the underlying formalisms

¥ Mathematical Foundations
—Predicate logic, set theory, abstract algebra

February 17, 2000 'Kenn eth M. Anderson, 2000

Entity-Relationship Diagrams

¥ A semi-formal notation for describing the
structure and relationships of data

—Akin to how Data Flow Diagrams are a semi-formal
notation for describing the operations that access and

manipulate data
¥ Problems
—Syntax and Semantics are not precisely defined

—Lack of Expressive power
¥ requires the use of natural language annotations

February 17, 2000 'Kenn eth M. Anderson, 2000

Example ER Diagram

Student Class
| Name Enrolled_In Subject
[Age Course_ID
Sex Max_Enrollment

(taken from textbook page 200)

February 17, 2000 'Kenn eth M. Anderson, 2000

ER Diagrams and UML

¥ ER Diagrams can be seen as precursors to
UML s Class Diagrams

¥ Differences
—eoperations and inheritance are added

¥ Advantages
—ER notation was never standardized, UML s
class diagrams provide a standard notation
¥ however, remember that they are both semi-formal

February 17, 2000 'Kenn eth M. Anderson, 2000

Logic Specifications

¥ Vocabulary of Logical Expressions
—Variables, constants, predicates, functions
—Connectives: and (A), or (V), not (—),

implies (=), equivalent (=)

—Quantifiers: exists (3), for all (V)

¥ Combined with Vocabulary of Application
—Example: set operators (e, U, N,)
—Example: ADT operators (Push, IsFull,)

February 17, 2000 'Kenn eth M. Anderson, 2000

Logic Specifications

¥ Examples
—x>yandy >z implies x>z
—for all x (exists y (y =x +2))
¥ Additional Notes

—Variables are either firee or bound

¥ A formula with all variables bound is called closed; closed
formulas are always either true or false

—Expressions are theories in the logic
—V &V amounts to theorem proving

February 17, 2000 'Kenn eth M. Anderson, 2000

Creating Logic Specifications

¥ Helper Predicates and Functions
—Define the base properties of interest

¥ Used as a domain-specific vocabulary
—Modularize the specification
¥ e.g., defined in one spec; used in another
¥ Examples
—height(bob) = 72; tall(bob)
—for p: person (height(p)>60 implies tall(p))

February 17, 2000 'Kenn eth M. Anderson, 2000 10

Logic Specification Techniques

¥ Preconditions and
Postconditions

¥ A property is defined
{Pre(il, 12,13,)}
—Textbook gives lots of P
examples on 204-205 {Post(ol, 02, 03, , il,

Assume <il, 12, 13, > 2,13, >}
are input values ¥ Example
Assume <ol, 02, 03, > fexists z (il =z * i2)}
are output values p
{ol =1l/i2}

February 17, 2000 'Kenn eth M. Anderson, 2000

11

Logic Specification Techniques

¥ Invariants and Assertions

—Logic specs are used to assert properties of
portions of code as well

—For instance, to assert something that is always
true of a routine or to record the assumptions
about variables passed to a procedure

{n>0j}
procedure reverse (a: in out int_array; n: in int)
{for all i (1<=i<=n) implies (a(i) = old_a(n-i+1))}

February 17, 2000 'Kenn eth M. Anderson, 2000 12

Algebraic Specifications

¥ Make use of heterogeneous algebra

—a collection of different sets on which several
operations are defined

—Traditional algebras are homogeneous, one set
and a several operations; e.g. integers

—Heterogeneous algebras contain multiple sets
Y e.g. length(ken) =3
¥ Here we have the set of strings and integers with one
operation length defined

February 17, 2000 'Kenn eth M. Anderson, 2000 13

RAISE

Rigorous Approach to Industrial Software Engineering

¥ A Method and a Language
¥ Specification Language: RSL

¥ Specifications Refined in Levels
—Associated consistency proof obligations
¥ Proofs of Properties Aided by Tools

February 17, 2000 'Kenn eth M. Anderson, 2000 14

Background Information

¥ In RAISE, they make use of a funny notion
of the domain and range of a function

¥ Each function consists of a set of tuples.
The domain is the set of elements that make
up the first element of each tuple; the range
is the set of elements that make up the
second set of each tuple

February 17, 2000 'Kenn eth M. Anderson, 2000 15

Example
¥ S={} ¥ Empty Set
¥ S=S¢ [l |->2] ¥ S={(1,2)}
¥ Domain = {1}
¥ Range = {2}

¥ S=S° [3 |[>4] ¥ S={(1,2), (3,4)}
¥ Domain = {1, 3}
¥ Range = {2, 4}
¥ S=S¢\[1] ¥ S={(3,4)}

February 17, 2000 'Kenn eth M. Anderson, 2000 16

RAISE Specification of POTS"

*Plain Old Telephone Service

February 17, 2000 'Kenn eth M. Anderson, 2000 17

RAISE Specification of POTS

scheme POTS =

February 17, 2000 'Kenn eth M. Anderson, 2000

RAISE Specification of POTS

scheme POTS =
class

type

value

variable

February 17, 2000 'Kenn eth M. Anderson, 2000 19

RAISE Specification of POTS

scheme POTS =
class

type

February 17, 2000 'Kenn eth M. Anderson, 2000

20

RAISE Specification of POTS

scheme POTS =
class
type Line,

February 17, 2000 'Kenn eth M. Anderson, 2000 21

RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m’{On_Hook, Off_Hook},
February 17, 2000 'Kenn eth M. Anderson, 2000 22

RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line m’ Line

February 17, 2000 'Kenn eth M. Anderson, 2000 23

RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m {On_Hook, Off _Hook},
Calls = Line o Line
value
February 17, 2000 'Kenn eth M. Anderson, 2000 24

RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line it Line
value go_off_hook : Line — Unit,

February 17, 2000 'Kenn eth M. Anderson, 2000 25

RAISE Specification of POTS

scheme POTS =
class
type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line m’Line
value go_off_hook : Line — Unit,
go_on_hook : Line — Unit,

February 17, 2000 'Kenn eth M. Anderson, 2000 26

RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off _Hook},
Calls = Line m’ Line

value go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line X Line — Bool,

February 17, 2000 'Kenn eth M. Anderson, 2000 27

RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off _Hook},
Calls = Line m’ Line

value go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line X Line — Bool,
end_call : Line — Unit

February 17, 2000 'Kenn eth M. Anderson, 2000 28

RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line m’ Line

value go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line x Line — Bool,
end_call : Line — Unit

variable

February 17, 2000 'Kenn eth M. Anderson, 2000 29

RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off_Hook},
Calls = Line o’ Line

value go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line x Line — Bool,
end_call : Line — Unit

variable line_status : Status=[L |-> On_Hook | L : Line],

February 17, 2000 'Kenn eth M. Anderson, 2000 30

RAISE Specification of POTS

scheme POTS =
class

type Line,
Status = Line m {On_Hook, Off _Hook},
Calls = Line m’ Line

value go_off_hook : Line — Unit,
go_on_hook : Line — Unit,
place_call : Line X Line — Bool,
end_call : Line — Unit

variable line_status : Status = [L |-> On_Hook | L : Line],
active_calls : Calls =]

February 17, 2000 'Kenn eth M. Anderson, 2000 31

RAISE Specification of POTS

February 17, 2000 'Kenn eth M. Anderson, 2000 32

RAISE Specification of POTS

axiom

February 17, 2000 'Kenn eth M. Anderson, 2000 33

RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥

February 17, 2000 'Kenn eth M. Anderson, 2000 34

RAISE Specification of POTS

axiom forall L,L, L, : Line ¥
go_off_hook(L)

go_on_hook(L)
place_call(L,, L,)

end_call(L)

February 17, 2000 'Kenn eth M. Anderson, 2000 35

RAISE Specification of POTS

axiom forall L,L |, L, : Line ¥
go_off_hook(L)

February 17, 2000 'Kenn eth M. Anderson, 2000 36

RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status¢ [L |->
Off_Hook],

February 17, 2000 'Kenn eth M. Anderson, 2000 37

RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status® [L |->
Off_Hook],

go_on_hook(L)

February 17, 2000 'Kenn eth M. Anderson, 2000 38

RAISE Specification of POTS

axiom forall L,L, L, : Line ¥
go_off hook(L) post line_status = line_status¢ [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook],

February 17, 2000 'Kenn eth M. Anderson, 2000 39

RAISE Specification of POTS

axiom forall L,L |, L, : Line ¥
go_off_hook(L) post line_status = line_status¢ [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status® [L |->
On_Hook],

place_call(L,,L,) as S

February 17, 2000 'Kenn eth M. Anderson, 2000 40

RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status¢ [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook],

place_call(L,,L,) as S
postS=1L, #L,

February 17, 2000 'Kenn eth M. Anderson, 2000 41

RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status‘ [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook],

place_call(L,,L,) as S
post S = L, #L, A active_calls = active_calls* [L, |->L,]

February 17, 2000 'Kenn eth M. Anderson, 2000 42

RAISE Specification of POTS

axiom forall L,L, L, : Line ¥
go_off hook(L) post line_status = line_status¢ [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook],

place_call(L,,L,) as S
post S = L, # L, A active_calls = active_calls* [L, |->L,]
A L, ¢ dom active_calls*

February 17, 2000 'Kenn eth M. Anderson, 2000 43

RAISE Specification of POTS

axiom forall L,L |, L, : Line ¥
go_off hook(L) post line_status = line_status® [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook],

place_call(L,,L,) as S
post S = L, #L, A active_calls = active_calls* [L, |->L,]
A L, ¢ dom active_calls® A L, ¢ rng active_calls®

February 17, 2000 'Kenn eth M. Anderson, 2000 44

RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status¢ [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status* [L |->
On_Hook],

place_call(L,,L,) as S
post S = L,#L, A active_calls = active_calls¢ [L, |->L,]
A L, ¢ dom active_calls* A L, ¢ rng active_calls®
pre

February 17, 2000 'Kenn eth M. Anderson, 2000 45

RAISE Specification of POTS

axiom forall L, L,, L, : Line ¥
go_off_hook(L) post line_status = line_status‘ [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status® [L |->
On_Hook],

place_call(L,,L,) as S
post S = L,#L, A active_calls = active_calls¢ [L, |->L,]
A L, ¢ dom active_calls* A L, ¢ rng active_calls®
pre line_status(L,) = Off_Hook

February 17, 2000 'Kenn eth M. Anderson, 2000 46

RAISE Specification of POTS

axiom forall L,L, L, : Line ¥
go_off hook(L) post line_status = line_status¢ [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status® [L |->
On_Hook],

place_call(L,,L,) as S
post S = L, # L, A active_calls = active_calls* [L, |->L,]
A L, ¢ dom active_calls® A L, ¢ rng active_calls®
pre line_status(L,) = Off_Hook

A L, ¢ dom active_calls

February 17, 2000 'Kenn eth M. Anderson, 2000 47

RAISE Specification of POTS

axiom forall L,L |, L, : Line ¥
go_off hook(L) post line_status = line_status® [L |->
Off_Hook],

go_on_hook(L) post line_status = line_status® [L |->
On_Hook],

place_call(L,,L,) as S
post S = L, # L, A active_calls = active_calls* [L, |->L,]
A L, ¢ dom active_calls® A L, ¢ rng active_calls®
pre line_status(L,) = Off_Hook

A L, ¢ dom active calls A L, ¢ rng active_ calls

February 17, 2000 'Kenn eth M. Anderson, 2000

RAISE Specification of POTS

February 17, 2000 'Kenn eth M. Anderson, 2000

49

RAISE Specification of POTS

end_call(L)

February 17, 2000 'Kenn eth M. Anderson, 2000 50

RAISE Specification of POTS

end_call(L)
post

February 17, 2000 'Kenn eth M. Anderson, 2000

51

RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then
else

end

February 17, 2000 'Kenn eth M. Anderson, 2000 52

RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*

then active_calls = active_calls* \{ L }
else

end

February 17, 2000 'Kenn eth M. Anderson, 2000

RAISE Specification of POTS

end_call(L)
post if L € dom active_calls®

then active_calls = active_calls* \{ L }
else3L;: Line ¥

end

February 17, 2000 'Kenn eth M. Anderson, 2000

54

RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then active_calls = active_calls® \{ L }
else3L;: Line ¥
active_calls® (L;) =L
end

February 17, 2000 'Kenn eth M. Anderson, 2000 55

RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*

then active_calls = active_calls® \{ L }
else3L;: Line ¥

active_calls® (L;)=L A

active_calls = active_calls‘ \{ L; }
end

February 17, 2000 'Kenn eth M. Anderson, 2000 56

RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then active_calls = active_calls‘ \{ L }
else3L;: Line ¥
active_calls® (L;)=L A
active_calls = active_calls‘ \{ L; }
end
pre

February 17, 2000 'Kenn eth M. Anderson, 2000 57

RAISE Specification of POTS

end_call(L)
post if L € dom active_calls®
then active_calls = active_calls® \{ L }
else3L;: Line ¥
active_calls® (L;)=L A
active_calls = active_calls‘ \{ L; }
end
pre L € dom active_calls

February 17, 2000 'Kenn eth M. Anderson, 2000 58

RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then active_calls = active_calls® \{ L }
else3L;: Line ¥
active_calls® (L;)=L A
active_calls = active_calls‘ \{ L; }
end
pre L e dom active_calls v L € rng active_calls

February 17, 2000 'Kenn eth M. Anderson, 2000 59

RAISE Specification of POTS

end_call(L)
post if L € dom active_calls*
then active_calls = active_calls® \{ L }
else3L;: Line ¥
active_calls® (L;)=L A
active_calls = active_calls‘ \{ L; }
end
pre L e dom active_calls v L € rng active_calls
end

February 17, 2000 'Kenn eth M. Anderson, 2000 60

