
Lecture 10: Descriptive Specifications

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

February 17, 2000 ' Kenn eth M. Anderson, 2000 2

Today s Lecture

¥ Introduce Descriptive Specifications
—E-R Diagrams (Semi-Formal)

—Axiomatic

—Algebraic

—Tour of the RAISE system
¥ Developed in Denmark

¥ Sold to European Manufacturing companies

¥ Using RAISE to create these types of specifications
—Has a full tool suite

February 17, 2000 ' Kenn eth M. Anderson, 2000 3

Descriptive Specifications

¥ Focuses on Properties
—Describes the desired properties of a system

rather than its desired behavior

¥ Formalisms
—Axiomatic (Logic)

—Algebraic

February 17, 2000 ' Kenn eth M. Anderson, 2000 4

Formalisms Provide Preciseness

¥ Use of Mathematical Formalisms
—Properties are specified precisely by building

on top of the precise mathematical syntax and
semantics of the underlying formalisms

¥ Mathematical Foundations
—Predicate logic, set theory, abstract algebra



February 17, 2000 ' Kenn eth M. Anderson, 2000 5

Entity-Relationship Diagrams

¥ A semi-formal notation for describing the
structure and relationships of data
—Akin to how Data Flow Diagrams are a semi-formal

notation for describing the operations that access and
manipulate data

¥ Problems
—Syntax and Semantics are not precisely defined

—Lack of Expressive power
¥ requires the use of natural language annotations

February 17, 2000 ' Kenn eth M. Anderson, 2000 6

Example ER Diagram

(taken from textbook page 200)

Enrolled_InName
Age
Sex

Subject
Course_ID
Max_Enrollment

ClassStudent

February 17, 2000 ' Kenn eth M. Anderson, 2000 7

ER Diagrams and UML

¥ ER Diagrams can be seen as precursors to
UML s Class Diagrams

¥ Differences
—operations and inheritance are added

¥ Advantages
—ER notation was never standardized, UML s

class diagrams provide a standard notation
¥ however, remember that they are both semi-formal

February 17, 2000 ' Kenn eth M. Anderson, 2000 8

Logic Specifications

¥ Vocabulary of Logical Expressions
—Variables, constants, predicates, functions
—Connectives: and (∧), or (∨), not (¬),

implies (⇒), equivalent (≡)

—Quantifiers: exists (∃), for all (∀)

¥ Combined with Vocabulary of Application
—Example: set operators (∈, ∪, ∩, )

—Example: ADT operators (Push, IsFull, )



February 17, 2000 ' Kenn eth M. Anderson, 2000 9

Logic Specifications

¥ Examples
—x > y and y > z implies x > z

—for all x (exists y (y = x + z))

¥ Additional Notes
—Variables are either free or bound

¥ A formula with all variables bound is called closed; closed
formulas are always either true or false

—Expressions are theories in the logic

—V&V amounts to theorem proving

February 17, 2000 ' Kenn eth M. Anderson, 2000 10

Creating Logic Specifications

¥ Helper Predicates and Functions
—Define the base properties of interest

¥ Used as a domain-specific vocabulary

—Modularize the specification
¥ e.g., defined in one spec; used in another

¥ Examples
—height(bob) = 72; tall(bob)

—for p: person (height(p)>60 implies tall(p))

February 17, 2000 ' Kenn eth M. Anderson, 2000 11

Logic Specification Techniques

¥ Preconditions and
Postconditions
—Textbook gives lots of

examples on 204-205

Assume <i1, i2, i3, >
are input values

Assume <o1, o2, o3, >
are output values

¥ A property is defined
{Pre(i1, i2, i3, )}

P

{Post(o1, o2, o3, , i1,
i2, i3, >}

¥ Example
{exists z (i1 = z * i2)}

P

{o1 = i1/i2}

February 17, 2000 ' Kenn eth M. Anderson, 2000 12

Logic Specification Techniques

¥ Invariants and Assertions
—Logic specs are used to assert properties of

portions of code as well

—For instance, to assert something that is always
true of a routine or to record the assumptions
about variables passed to a procedure

{n > 0}

procedure reverse (a: in out int_array; n: in int)

{for all i (1<=i<=n) implies (a(i) = old_a(n-i+1))}



February 17, 2000 ' Kenn eth M. Anderson, 2000 13

Algebraic Specifications

¥ Make use of heterogeneous algebra
—a collection of different sets on which several

operations are defined

—Traditional algebras are homogeneous, one set
and a several operations; e.g. integers

—Heterogeneous algebras contain multiple sets
¥ e.g. length( ken ) = 3

¥ Here we have the set of strings and integers with one
operation length  defined

February 17, 2000 ' Kenn eth M. Anderson, 2000 14

RAISE

¥ A Method and a Language

¥ Specification Language: RSL

¥ Specifications Refined in Levels
—Associated consistency proof obligations

¥ Proofs of Properties Aided by Tools

Rigorous Approach to Industrial Software Engineering

February 17, 2000 ' Kenn eth M. Anderson, 2000 15

Background Information

¥ In RAISE, they make use of a funny notion
of the domain and range of a function

¥ Each function consists of a set of tuples.
The domain is the set of elements that make
up the first element of each tuple; the range
is the set of elements that make up the
second set of each tuple

February 17, 2000 ' Kenn eth M. Anderson, 2000 16

Example

¥ S = {}

¥ S = S‘   [1  |-> 2]

¥ S = S‘   [3  |-> 4]

¥ S = S‘ \[1]

¥ Empty Set

¥ S = {(1,2)}

¥ Domain = {1}

¥ Range = {2}

¥ S = {(1,2), (3,4)}

¥ Domain = {1, 3}

¥ Range = {2, 4}

¥ S = {(3, 4)}



February 17, 2000 ' Kenn eth M. Anderson, 2000 17

RAISE Specification of POTS*

* Plain Old Telephone Service

February 17, 2000 ' Kenn eth M. Anderson, 2000 18

scheme POTS =

RAISE Specification of POTS

February 17, 2000 ' Kenn eth M. Anderson, 2000 19

scheme POTS =
class

type
        
        

value      
        
        
        

variable
        

RAISE Specification of POTS

February 17, 2000 ' Kenn eth M. Anderson, 2000 20

scheme POTS =
class

type

RAISE Specification of POTS



February 17, 2000 ' Kenn eth M. Anderson, 2000 21

scheme POTS =
class

type        Line,
        

RAISE Specification of POTS

February 17, 2000 ' Kenn eth M. Anderson, 2000 22

scheme POTS =
class

type        Line,
        Status = Line    {On_Hook, Off_Hook},
        

RAISE Specification of POTS

m→ 

February 17, 2000 ' Kenn eth M. Anderson, 2000 23

scheme POTS =
class

type        Line,
        Status = Line     {On_Hook, Off_Hook},
        Calls = Line     Line

RAISE Specification of POTS

m→ 
m→ 

February 17, 2000 ' Kenn eth M. Anderson, 2000 24

scheme POTS =
class

type        Line,
        Status = Line     {On_Hook, Off_Hook},
        Calls = Line     Line

value

RAISE Specification of POTS

m→ 
m→ 



February 17, 2000 ' Kenn eth M. Anderson, 2000 25

scheme POTS =
class

type        Line,
        Status = Line     {On_Hook, Off_Hook},
        Calls = Line     Line

value      go_off_hook : Line → Unit,
        

RAISE Specification of POTS

m→ 
m→ 

February 17, 2000 ' Kenn eth M. Anderson, 2000 26

scheme POTS =
class

type        Line,
        Status = Line     {On_Hook, Off_Hook},
        Calls = Line     Line

value      go_off_hook : Line → Unit,
        go_on_hook : Line → Unit,
        

RAISE Specification of POTS

m→ 
m→ 

February 17, 2000 ' Kenn eth M. Anderson, 2000 27

scheme POTS =
class

type        Line,
        Status = Line     {On_Hook, Off_Hook},
        Calls = Line     Line

value      go_off_hook : Line → Unit,
        go_on_hook : Line → Unit,
        place_call : Line × Line → Bool,
        

RAISE Specification of POTS

m→ 
m→ 

February 17, 2000 ' Kenn eth M. Anderson, 2000 28

scheme POTS =
class

type        Line,
        Status = Line     {On_Hook, Off_Hook},
        Calls = Line     Line

value      go_off_hook : Line → Unit,
        go_on_hook : Line → Unit,
        place_call : Line × Line → Bool,
        end_call : Line → Unit

RAISE Specification of POTS

m→ 
m→ 



February 17, 2000 ' Kenn eth M. Anderson, 2000 29

scheme POTS =
class

type        Line,
        Status = Line     {On_Hook, Off_Hook},
        Calls = Line     Line

value      go_off_hook : Line → Unit,
        go_on_hook : Line → Unit,
        place_call : Line × Line → Bool,
        end_call : Line → Unit

variable

RAISE Specification of POTS

m→ 
m→ 

February 17, 2000 ' Kenn eth M. Anderson, 2000 30

scheme POTS =
class

type        Line,
        Status = Line     {On_Hook, Off_Hook},
        Calls = Line     Line

value      go_off_hook : Line → Unit,
        go_on_hook : Line → Unit,
        place_call : Line × Line → Bool,
        end_call : Line → Unit

variable  line_status : Status = [ L |-> On_Hook  L : Line ],
        

RAISE Specification of POTS

m→ 
m→ 

February 17, 2000 ' Kenn eth M. Anderson, 2000 31

scheme POTS =
class

type        Line,
        Status = Line     {On_Hook, Off_Hook},
        Calls = Line     Line

value      go_off_hook : Line → Unit,
        go_on_hook : Line → Unit,
        place_call : Line × Line → Bool,
        end_call : Line → Unit

variable  line_status : Status = [ L |-> On_Hook  L : Line ],
        active_calls : Calls = [ ]

RAISE Specification of POTS

m→ 
m→ 

February 17, 2000 ' Kenn eth M. Anderson, 2000 32

RAISE Specification of POTS



February 17, 2000 ' Kenn eth M. Anderson, 2000 33

RAISE Specification of POTS
axiom

February 17, 2000 ' Kenn eth M. Anderson, 2000 34

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

February 17, 2000 ' Kenn eth M. Anderson, 2000 35

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)

go_on_hook(L)

place_call(L1, L2)

end_call(L)

February 17, 2000 ' Kenn eth M. Anderson, 2000 36

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)



February 17, 2000 ' Kenn eth M. Anderson, 2000 37

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

February 17, 2000 ' Kenn eth M. Anderson, 2000 38

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)

February 17, 2000 ' Kenn eth M. Anderson, 2000 39

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

February 17, 2000 ' Kenn eth M. Anderson, 2000 40

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

place_call(L1, L2)  as S



February 17, 2000 ' Kenn eth M. Anderson, 2000 41

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

place_call(L1, L2)  as S
post S ⇒ L1  ≠ L2

February 17, 2000 ' Kenn eth M. Anderson, 2000 42

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

place_call(L1, L2)  as S
post S ⇒ L1 ≠ L2 ∧ active_calls = active_calls‘   [L1 |-> L2 ]

February 17, 2000 ' Kenn eth M. Anderson, 2000 43

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

place_call(L1, L2)  as S
post S ⇒ L1 ≠ L2 ∧ active_calls = active_calls‘  [ L1 |-> L2 ]

 ∧  L2 ∉ dom active_calls‘

February 17, 2000 ' Kenn eth M. Anderson, 2000 44

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

place_call(L1, L2)  as S
post S ⇒ L1 ≠ L2 ∧ active_calls = active_calls‘  [ L1 |-> L2 ]

 ∧  L2 ∉ dom active_calls‘  ∧  L2 ∉ rng active_calls‘



February 17, 2000 ' Kenn eth M. Anderson, 2000 45

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

place_call(L1, L2)  as S
post S ⇒ L1 ≠ L2 ∧ active_calls = active_calls‘  [ L1 |-> L2 ]

 ∧  L2 ∉ dom active_calls‘  ∧  L2 ∉ rng active_calls‘
pre

February 17, 2000 ' Kenn eth M. Anderson, 2000 46

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

place_call(L1, L2)  as S
post S ⇒ L1 ≠ L2 ∧ active_calls = active_calls‘  [ L1 |-> L2 ]

 ∧  L2 ∉ dom active_calls‘  ∧  L2 ∉ rng active_calls‘
pre   line_status(L1) = Off_Hook

February 17, 2000 ' Kenn eth M. Anderson, 2000 47

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

place_call(L1, L2)  as S
post S ⇒ L1 ≠ L2 ∧ active_calls = active_calls‘  [ L1 |-> L2 ]

 ∧  L2 ∉ dom active_calls‘  ∧  L2 ∉ rng active_calls‘
pre   line_status(L1) = Off_Hook

 ∧  L1 ∉ dom active_calls
February 17, 2000 ' Kenn eth M. Anderson, 2000 48

RAISE Specification of POTS
axiom forall L, L1, L2 : Line ¥

go_off_hook(L)  post  line_status = line_status‘    [ L |->
Off_Hook ],

go_on_hook(L)  post  line_status = line_status‘    [ L |->
On_Hook ],

place_call(L1, L2)  as S
post S ⇒ L1 ≠ L2 ∧ active_calls = active_calls‘  [ L1 |-> L2 ]

 ∧  L2 ∉ dom active_calls‘  ∧  L2 ∉ rng active_calls‘
pre   line_status(L1) = Off_Hook

 ∧  L1 ∉ dom active_calls   ∧  L1 ∉ rng active_calls,



February 17, 2000 ' Kenn eth M. Anderson, 2000 49

RAISE Specification of POTS

February 17, 2000 ' Kenn eth M. Anderson, 2000 50

RAISE Specification of POTS

end_call(L)

February 17, 2000 ' Kenn eth M. Anderson, 2000 51

RAISE Specification of POTS

end_call(L)
post

February 17, 2000 ' Kenn eth M. Anderson, 2000 52

RAISE Specification of POTS

end_call(L)
post  if  L ∈ dom active_calls‘
         then
         else

         end



February 17, 2000 ' Kenn eth M. Anderson, 2000 53

RAISE Specification of POTS

end_call(L)
post  if  L ∈ dom active_calls‘
         then active_calls = active_calls‘ \{ L }
         else

         end

February 17, 2000 ' Kenn eth M. Anderson, 2000 54

RAISE Specification of POTS

end_call(L)
post  if  L ∈ dom active_calls‘
         then active_calls = active_calls‘ \{ L }
         else ∃ L3 : Line  ¥

         end

February 17, 2000 ' Kenn eth M. Anderson, 2000 55

RAISE Specification of POTS

end_call(L)
post  if  L ∈ dom active_calls‘
         then active_calls = active_calls‘ \{ L }
         else ∃ L3 : Line  ¥

active_calls‘ (L3) = L
         end

February 17, 2000 ' Kenn eth M. Anderson, 2000 56

RAISE Specification of POTS

end_call(L)
post  if  L ∈ dom active_calls‘
         then active_calls = active_calls‘ \{ L }
         else ∃ L3 : Line  ¥

active_calls‘ (L3) = L  ∧
            active_calls = active_calls‘ \{ L3 }
         end



February 17, 2000 ' Kenn eth M. Anderson, 2000 57

RAISE Specification of POTS

end_call(L)
post  if  L ∈ dom active_calls‘
         then active_calls = active_calls‘ \{ L }
         else ∃ L3 : Line  ¥

active_calls‘ (L3) = L  ∧ 
            active_calls = active_calls‘ \{ L3 }
         end
pre

February 17, 2000 ' Kenn eth M. Anderson, 2000 58

RAISE Specification of POTS

end_call(L)
post  if  L ∈ dom active_calls‘
         then active_calls = active_calls‘ \{ L }
         else ∃ L3 : Line  ¥

active_calls‘ (L3) = L  ∧
            active_calls = active_calls‘ \{ L3 }
         end
pre    L ∈ dom active_calls

February 17, 2000 ' Kenn eth M. Anderson, 2000 59

RAISE Specification of POTS

end_call(L)
post  if  L ∈ dom active_calls‘
         then active_calls = active_calls‘ \{ L }
         else ∃ L3 : Line  ¥

active_calls‘ (L3) = L  ∧
            active_calls = active_calls‘ \{ L3 }
         end
pre    L ∈ dom active_calls  ∨  L ∈ rng active_calls

February 17, 2000 ' Kenn eth M. Anderson, 2000 60

RAISE Specification of POTS

end_call(L)
post  if  L ∈ dom active_calls‘
         then active_calls = active_calls‘ \{ L }
         else ∃ L3 : Line  ¥

active_calls‘ (L3) = L  ∧
            active_calls = active_calls‘ \{ L3 }
         end
pre    L ∈ dom active_calls  ∨  L ∈ rng active_calls

end


