
Lecture 9: Petri-Nets (Continued)

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2000

February 15, 2000 © Kenneth M. Anderson, 2000 2

Today’s Lecture

• Finish the Filling Station Example

• Look at analysis techniques using Petri Nets

• Look at extensions to the basic Petri Net
formalism
– add “data” to tokens

– add “conditionals” to transitions

February 15, 2000 © Kenneth M. Anderson, 2000 3

Filling Station Example

• Lets model the following situation
– Fuel Pumps

– Spaces next to Pumps

– A cashier that takes payment

• Questions
– What is the concurrency that we want modeled?

– How do we handle the parameterization of the
Petri net? (e.g. lets say I want to add a pump)

February 15, 2000 © Kenneth M. Anderson, 2000 4

Concurrency Problems

• Starvation
 Enabled transition never fired

• Deadlock
 Unintended lack of enabled transitions

• V&V Tries to Detect These Problems
 Static and dynamic analysis techniques

February 15, 2000 © Kenneth M. Anderson, 2000 5

Analysis of Specifications

• Design is a Human Activity
 Can be wrong; can change

• Verification and Validation

• V&V are “W.R.T.” Activities

• A Confidence Game
 V&V can only be used to raise confidence in

the quality of a specification

February 15, 2000 © Kenneth M. Anderson, 2000 6

Approaches to Analysis

• Dynamic Analysis
– Executes specification text to reveal properties

– Requires executable specifications

– Example: testing

• Static Analysis
– Examines specification text to reveal properties

– Useful in the absence of execution semantics, but also
where execution would be impractical

– Example: proof of correctness

February 15, 2000 © Kenneth M. Anderson, 2000 7

Dynamic Analysis

• An Experimentation Activity

• Goal: Demonstrate (In)correct Behavior

• An Experiment Characterizes a Single Behavior

• Applied to the Artifact Itself

• Can Miss Critical Behaviors

• In General, Impossible to Demonstrate Absence of
Error

February 15, 2000 © Kenneth M. Anderson, 2000 8

Petri Net Dynamic Analysis

• Reachability Graph
– The reachability graph of a Petri net is a graph

representation of its possible firing sequences

• Analysis Cast as Search for Node in
Reachability Graph
– Found, means behavior possible, not found

means behavior impossible

February 15, 2000 © Kenneth M. Anderson, 2000 9

Two-process Semaphore

In1 In2

Out1 Out2

CR1 CR2

Sem

February 15, 2000 © Kenneth M. Anderson, 2000 10

Petri Net Dynamic Analysis

• Example: Two-process Semaphore
 Is it possible for both processes to be in their

critical regions at the same time in the same
marking? That is, is the following a valid
marking?

 M = (In1 , CR1 , Out1 , Sem , In2 , CR2 , Out2 )

 = (0,1,0,0,0,1,0)

February 15, 2000 © Kenneth M. Anderson, 2000 11

Reachability Graph

Each node in the graph is a marking
(In1 , CR1 , Out1 , Sem , In2 , CR2 , Out2 )

February 15, 2000 © Kenneth M. Anderson, 2000 12

Reachability Graph

Each node in the graph is a marking
(In1 , CR1 , Out1 , Sem , In2 , CR2 , Out2 )

(0,1,0,0,1,0,0)

(1,0,0,0,0,1,0)

(0,0,1,1,1,0,0)

(1,0,0,1,0,0,1)

(0,1,0,0,0,0,1)

(1,0,0,1,1,0,0)M0

(0,0,1,0,0,1,0)

(0,0,1,1,0,0,1)

February 15, 2000 © Kenneth M. Anderson, 2000 13

Petri Net Dynamic Analysis

• Example: Two-process Semaphore
 Is it possible for both processes to be in their

critical regions at the same time in the same
marking? That is, is the following a valid
marking?

 M = (In1 , CR1 , Out1 , Sem , In2 , CR2 , Out2 )

 = (0,1,0,0,0,1,0)

February 15, 2000 © Kenneth M. Anderson, 2000 14

Static Analysis

• Goal: Prove Theorems About Properties

• An Analysis Characterizes a Class of Behaviors

• Applied to a (Static) Model

• Can Abstract Away Critical Apsects

• In General, Impossible to Prove Absence of Error

February 15, 2000 © Kenneth M. Anderson, 2000 15

Petri Net Static Analysis

• The Method of Invariants
 Invariants are properties of a Petri net that hold

in all markings

• Analysis Cast as Proof of Invariance

February 15, 2000 © Kenneth M. Anderson, 2000 16

• Example: Two-process Semaphore
 Is the sum of the tokens in CR1, CR2, and Sem

equal to 1 in all reachable markings? That is,
forAll(m ε [all possible markings]) does:

 CR1  + CR2  + Sem  = 1

Petri Net Static Analysis

February 15, 2000 © Kenneth M. Anderson, 2000 17

Shortcoming of Basic Petri Nets

Would Like…
– Enable and fire as computations

– Tokens as data, not just control

Simplicity of building blocks leads to
complexity in nets

Example: Semaphore for n processes requires
 2n transitions and 3n+1 places

February 15, 2000 © Kenneth M. Anderson, 2000 18

Higher-Level Petri Nets

• Some Enhancements to Basic Petri Nets
– Typed places and information-bearing tokens

– Predicate transitions

– Hierarchical decomposition of places and
transitions

Requirement for analysis of higher-level nets:
reducible to basic nets for analysis

February 15, 2000 © Kenneth M. Anderson, 2000 19

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 20

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

token
value

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 21

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

transition
predicate

token
value

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 22

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

transition
predicate

token
value

arc
expression

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 23

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

transition
predicate

token
value

arc
expression

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 24

Execution Model

• “Enable” is a Predicate on Input Tokens
– Transition with k input places is enabled if there

exists a k-tuple of tokens, one at each input
place, that satisfy the predicate; called a ready
tuple

– Enabled transition and ready tuple are
nondeterministically selected

– Tokens of selected ready tuple removed at
firing

February 15, 2000 © Kenneth M. Anderson, 2000 25

Execution Model

• Function Computes Output Token Values
– Transition with h output places uses the

function to compute h values, one for each
output token

February 15, 2000 © Kenneth M. Anderson, 2000 26

Higher-Level Net Semaphore
p

p

p

p

s

s

s + 1
true

19
71

3

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 27

Enabled Transition
p

p

p

p

s

s

s + 1

s > 0

true

19
71

3s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 28

After Firing
p

p

p

p

s

s

s + 1
true

19

2
71

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 29

Enabled Transitions
p

p

p

p

s

s

s + 1
true

19

2
71

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 30

After Firing
p

p

p

p

s

s

s + 1
true

19
71

1

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 31

Enabled Transition
p

p

p

p

s

s

s + 1

119
71

true

s > 0

s - 1

February 15, 2000 © Kenneth M. Anderson, 2000 32

After Firing
p

p

p

p

s

s
s - 1

s + 1

2

19

71

true

s > 0

