
© Kenneth M. Anderson, 2016

Grand Central Dispatch 
and 

NSOperation

CSCI 5828: Foundations of Software Engineering

Lecture 27 — 11/29/2016

1



© Kenneth M. Anderson, 2016

Credit Where Credit Is Due

• Most of the examples in this lecture were inspired by example code found in


• Advanced Mac OS X Programming: The Big Nerd Ranch Guide


• by Mark Dalrymple


• iOS Programming: The Big Nerd Ranch Guide, 2nd Edition


• by Joe Conway & Aaron Hillegass


• Both books come highly recommended, as are all Big Nerd Ranch Guides!

2



© Kenneth M. Anderson, 2016

Goals

• Cover the main concepts of Grand Central Dispatch, a concurrency 
framework, first deployed by Apple in OS X 10.6 and iOS 4.


• Queues and Tasks


• Supporting Concept


• Blocks, an extension to C, used heavily by Grand Central Dispatch


• Also cover NSOperation, a higher-level API that allows OS X and iOS 
applications to perform tasks concurrently


• This higher-level API existed before Grand Central Dispatch


• but has since been re-implemented to use GCD underneath


• Note: Have not yet updated this lecture for Swift!

3



© Kenneth M. Anderson, 2016

Design Approaches for Concurrent Systems

• There are three approaches to the design of concurrent systems


• Shared Mutability


• Multiple threads can access mutable variables; need synchronization


• Isolated Mutability


• Multiple threads; but only one thread can access a mutable variable at 
a time; no locking; the Actor Model (in other languages besides Elixir) 

• Pure Immutability


• No mutable variables; values can be shared freely across multiple 
threads

4



© Kenneth M. Anderson, 2016

And the Winner is...

• After looking at each approach, it’s clear that


• Shared mutability is really hard


• starvation, race conditions, and deadlock, oh my! 


• Pure immutability is also hard


• but primarily because it is unfamiliar;


• Clojure/Elixir/Scala are making headway here


• Isolated mutability is the way to go! 

• java.util.concurrent helps to create isolated mutability solutions


• The Actor Model (in other languages besides Elixir) encourages isolated 
mutability as well

5



© Kenneth M. Anderson, 2016

Grand Central Dispatch: Up With Isolated Mutability

• Grand Central Dispatch is


• an approach to creating concurrent software systems


• it encourages developers to adopt the isolated mutability approach


• While initially deployed only on OS X 10.6 and iOS 4, the source code for 
libdispatch (the library that implements GCD) was released under the Apache 
License in September 2009 and has since been ported to


• OS X 10.7-10.12 and iOS 5-10 (by Apple)


• FreeBSD, Linux, Solaris (by the Open Source community)


• According to Wikipedia, two Windows ports exist (via open source)


• and Apple ported the library to Windows for use in its own products

6

http://en.wikipedia.org/wiki/Grand_Central_Dispatch


© Kenneth M. Anderson, 2016

Tasks and Work Items

• The first key abstraction in GCD is the task


• A task is a discrete goal that your application wants to accomplish


• display a web page; analyze a set of tweets; calculate primes


• Tasks can depend on other tasks and might be decomposed into sub-tasks


• Tasks themselves are ultimately decomposed into work items


• work items are chunks of code (known as blocks) that need to be 
executed to make progress on a task


• read a file; parse a tweet; break down a range of numbers


• Work items get placed on queues; when they get to the front of a queue, they 
are assigned to a thread and get executed

7



© Kenneth M. Anderson, 2016

Queues

• The second key abstraction for GCD is the queue


• Queues can be either


• a serial queue, created for a specific application


• or


• a global queue, created by the operating system


• three global queues of different priorities: low, default, and high


• Serial queues are lightweight constructs; you can have as many as you need


• Each serial queue must “target” a global queue to get work done


• Serial queues can also target other serial queues but ultimately they 
have to point at a global queue

8



© Kenneth M. Anderson, 2016

Semantics of Queues

• Both types of queues have FIFO semantics


• The difference lies in the semantics of work completion


• Global queues


• dispatch (assign work items to threads) in FIFO order


• Serial queues


• dispatch and complete work items in FIFO order


• What does this mean?


• A serial queue executes only one work item at a time


• A global queue executes many work items at a time

9



© Kenneth M. Anderson, 2016 10

In this simplified view, GCD is managing one 
serial queue (for application A) and one 
global queue. The serial queue is targeting 
the global queue. Work items from the serial 
queue are shown in red. Work items from 
other sources are shown in green.

Thread Pool

Global Queue

Serial Queue



© Kenneth M. Anderson, 2016 11

What “other sources” exist? Application A 
may have other serial queues targeting the 
global queue, or it might have background 
threads adding work items directly to the 
global queue. Other applications may also 
be adding work items to the global queue. 
Finally, the OS itself may add work items to 
the global queue.

Thread Pool

Global Queue

Serial Queue



© Kenneth M. Anderson, 2016 12

There are no red work items in the global 
queue because a serial queue dispatches 
AND completes work items in FIFO order. 
Since a red item is currently running, no 
additional work items in the serial queue can 
be added to the global queue.

Thread Pool

Global Queue

Serial Queue



© Kenneth M. Anderson, 2016 13

No such constraints exist for the green work 
items, they can be dispatched 
immediately as threads become available. 
The global queue does not care about work 
item completion, it only guarantees that work 
items are assigned to threads in FIFO order. 

Thread Pool

Global Queue

Serial Queue



© Kenneth M. Anderson, 2016 14

NOTE: GCD automatically determines how 
many threads it should allocate based on 
system load, number of cores, etc. It takes a 
global view of the workload on the entire 
machine and allocates threads accordingly.

Thread Pool

Global Queue

Serial Queue



© Kenneth M. Anderson, 2016 15

Thread Pool

Global Queue

Serial Queue

When a green work item completes...



© Kenneth M. Anderson, 2016 16

Thread Pool

Global Queue

Serial Queue

When a green work item completes, the 
global queue will immediately dispatch 
another item from the queue.



© Kenneth M. Anderson, 2016 17

The queue will update...

Thread Pool

Global Queue

Serial Queue



© Kenneth M. Anderson, 2016 18

... and another green work item can be 
added.

Thread Pool

Global Queue

Serial Queue



© Kenneth M. Anderson, 2016 19

Thread Pool

Global Queue

Serial Queue

When a red work item completes...



© Kenneth M. Anderson, 2016 20

Thread Pool

Global Queue

Serial Queue

When a red work item completes, the global 
queue will immediately dispatch the next 
item from the queue.



© Kenneth M. Anderson, 2016 21

Thread Pool

Global Queue

Serial Queue

Once again, the queue will update...



© Kenneth M. Anderson, 2016 22

Thread Pool

Global Queue

Serial Queue

... but this time, the serial queue can add its 
work item to the global queue. That work 
item will then wait its turn to be dispatched 
to an available thread.



© Kenneth M. Anderson, 2016 23

Of course, it’s not this simple

• An actual implementation of GCD is more complex


• Tens to hundreds of serial queues and thousands of work items


• Lots of threads based on cores and overall load on system


• Three global queues with different priorities


• Plus


• tasks can be added to a global queue with a time constraint


• a set of tasks can be added to a group; an app can then wait for the entire 
group to complete


• GCD can monitor kernel-level events (signals, file reads, etc.) and then add 
a predefined block to one of its queues to handle the event



© Kenneth M. Anderson, 2016

GCD is powerful (I)

• When you start an application in OS X or iOS,


• you do some initialization


• and then you start the main event loop


• everything you do in your application is located in an event handler that 
is called by the main event loop when a particular event occurs


• With the advent of GCD, all “main event loops” were reimplemented to be 
serial queues!


• Since GCD monitors the work load of the entire machine, all of the events 
being handled by all of your running applications are automatically taken 
into account


• and will influence the number of threads allocated by GCD

24



© Kenneth M. Anderson, 2016

GCD is powerful (II)

• Contrast this approach with Java’s ExecutorService


• An ExecutorService is an application-level construct


• When we talked about thread-allocation calculations in our programs earlier 
this semester, we did them within the context of a single application


• Those programs have NO IDEA what else is running on the operating 
system


• So, I/O intensive applications are going to allocate HUNDREDS OF 
THREADS, even if four other I/O-intensive applications are running at the 
same time


• With GCD, you get the benefits of not having to worry about thread allocation 
and guarantees that GCD will be allocating the number of threads it needs to 
efficiently handle all the current set of work items

25



© Kenneth M. Anderson, 2016

GCD is powerful (III)

• A high level overview of GCD is available here:


• <https://developer.apple.com/library/content/documentation/General/
Conceptual/ConcurrencyProgrammingGuide/Introduction/
Introduction.html>

26

https://developer.apple.com/library/content/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html


© Kenneth M. Anderson, 2016

GCD API (I)

• The primary API of GCD centers around queues; NOTE: this is a C API


• You can get hold of your application’s main queue (a serial queue) like this


• dispatch_queue_t dispatch_get_main_queue (void); 

• You can get hold of one of the three global queues via:


• dispatch_queue_t dispatch_get_global_queue (priority, flags); 

• You can create your own queue with this function:


• dispatch_queue_t dispatch_queue_create (label, attr); 

• Note: I’m hiding parameter types for clarity


• label is a reverse DNS string: “edu.colorado.cs.MyClient”

27



© Kenneth M. Anderson, 2016

GCD API (II)

• To add a block to a queue for asynchronous execution:


• void dispatch_async(dispatch_queue_t queue; void (^block)(void)); 

• To add a block to a queue for synchronous execution:


• void dispatch_sync(dispatch_queue_t queue; void (^block)(void)); 

• If you have a for loop that is used to perform a set of calculations, where each 
calculation is independent, you can have GCD execute the calculations in 
parallel (!!):

• void dispatch_apply(size_t iterations, dispatch_queue_t queue, void (^block)(size_t index));

28



© Kenneth M. Anderson, 2016

What in the world is “void (^block)(void)”?

• Welcome to the exciting world of blocks! 

• blocks are an addition to the C programming language


• They allow the creation of anonymous functions that can be handed around for 
later execution.


• When a block is created, it acts as a closure, that captures the values of 
variables in scope at that time


• We won’t go into memory management details but


• blocks will automatically retain object instances to ensure they stay 
around for when the block executes (which may happen long after it is 
created)


• blocks created on the stack will migrate to the heap (automatically) if the 
function that created them is about to go out of scope

29

http://goshdarnblocksyntax.com

http://goshdarnblocksyntax.com


© Kenneth M. Anderson, 2016

Block Basics (I)

• If you need to store a block in a variable, you need to declare the variable 
correctly. Normally, a variable definition in C looks something like


• int myInteger; int mySecondInteger = 42; 

• With blocks, the name of the variable becomes embedded inside of the type 
information for the block; (very similar to function pointer declarations)


• Since the block is a function, we need to know its return type and its 
parameters


• void (^block)(void); 

• This declares an uninitialized variable called “block” that returns void and 
takes no parameters; The ^ symbol indicates we are dealing with a block


• Assuming we point this variable at a block, we invoke it like any other 
function: block();

30



© Kenneth M. Anderson, 2016

Block Basics (II)

• Here’s a more involved example


• NSString * (^myVar)(int a, int b); 

• This declares an uninitialized variable called “myVar”


• This variable can be pointed at any block that takes two integers as 
parameters and returns an NSString. For instance:


• myVar = ^(int a, int b) { 

• return [NSString stringWithFormat:@"%d:%d", a, b]; 

• }; 

• We could then invoke this block like this:


• myVar(23, 42); // returns “23:42”

31



© Kenneth M. Anderson, 2016

Block Basics (III)

• Blocks act as closures and will capture the values of any variables that are


• in scope and referenced by the block


• For example


• int value = 5; 

• void (^printIt)(void) = ^(void) { 

• NSLog(@"%d", value); 

• } 

• value = 10; 

• printIt(); // prints “5” to standard out

32

Let’s see this in action; 
DEMO



© Kenneth M. Anderson, 2016

Block Basics (IV)

• Most of the time, you will NOT explicitly store a pointer to a block in your own 
code; instead, you will create blocks and pass them into method calls


• You can think of these blocks as anonymous functions being passed 
around for invocation at a later time


• This is how blocks play the role of work items in GCD


• You create a block and pass it to a queue using dispatch_async()


• The block gets stored in the queue


• At some point in the future, the block is assigned to a thread and the 
thread simply invokes it to cause the work item to execute:


• block(); // assuming block is defined as: void (^block)(void);

33



© Kenneth M. Anderson, 2016

Uses of Blocks and GCD

• One use of GCD in OS X apps is to free the main thread from having to 
perform a long running task


• Example: Word Counting application


• Without GCD, a long running count operation can generate the 
“Spinning Pizza of Death” icon, rendering the UI non-responsive


• With GCD, the UI remains responsive while the count operation occurs 
in the background


• Note: since computers are so dang fast these days, we simulate a long 
running operation in the program with the use of a call to sleep();


• Sigh

34

DEMO



© Kenneth M. Anderson, 2016

Return to Prime Finder

• We can use our Prime Finder example from earlier in the semester to show 
how we can use GCD to handle a compute-intensive task


• We’ll add a GUI to this example, since XCode makes that straightforward


• Here we adopt an approach to handling “unbalanced tasks” when performing 
lots of compute-bound operations


• to keep the cores active for this compute-intensive problem


• we’ll just create a bunch of tasks


• this will help us deal with the fact that some tasks take a LOT longer to 
calculate than others


• by having lots of tasks, cores that finish the fast tasks can eventually be 
assigned one of the slower tasks

35

DEMO



© Kenneth M. Anderson, 2016

NSOperation

• GCD is nice but its API is fairly low-level


• and while it adopts an OO-like design (not discussed), it does not provide 
the abstraction and encapsulation possible with a true OO API


• In addition, it is difficult to cancel work items and managing dependencies 
between groups of work items is not straightforward


• NSOperation addresses these concerns


• It is a high-level OO API


• It is easy to specify dependencies between operations


• It is easy to cancel an operation


• It is implemented on top of GCD; Apple has done the hard work for you!

36



© Kenneth M. Anderson, 2016

Main Concepts: NSOperation

• NSOperation represents a unit of parallelizable work


• what we’ve been calling “task” all semester and “work item” in this lecture


• each NSOperation runs in its own thread


• To define a task, you subclass NSOperation and override its main() method


• When main() returns, the NSOperation is considered complete


• An operation can be cancelled; as a result, an instance of NSOperation is 
expected to call isCancelled() to determine if it should shut down


• it should call this right at the very beginning of main() since an 
NSOperation might be cancelled before it gets a chance to run


• Some operations can take priority over others; use setQueuePriority() to set


• Finally, some operations can depend on others: add/removeDependency()

37



© Kenneth M. Anderson, 2016

Main Concepts: NSOperationQueue

• NSOperationQueue is a class that accepts instances of NSOperation and 
runs them


• each in their own thread (as of OS X 10.6); requires care to detect the 
completion of operations


• NSOperationQueue manages its own thread allocation


• the developer simply works in terms of NSOperations and 
NSOperationQueues


• Add operations to a queue with addOperation()


• You can cancel all operations in a queue with cancelAllOperations()


• You can also wait (synchronously) for all operations to finish with 
waitUntilAllOperationsAreFinished()

38



© Kenneth M. Anderson, 2016

Example: MandelOpper

• Will use NSOperation to generate a picture of the Mandelbrot set


• Simple application design


• MandelOpperAppDelegate: controller that kicks everything off


• Bitmap: a class to store calculated byte values


• BitmapView: a view inside of a window that will display the contents of 
Bitmap


• CalcOperation: a subclass of NSOperation that calculates one row of the 
image


• We create one CalcOperation per row and add it to the queue


• DEMO

39



© Kenneth M. Anderson, 2016

Summary

• Reviewed concepts, techniques, and examples related to


• GCD


• Queue (Serial and Global), Task, Work Item


• Work Items are implemented as blocks


• NSOperation and NSOperationQueue


• Higher-level OO API built on top of GCD


• NSOperationQueues dynamically assign NSOperations to threads


• Each NSOperation runs concurrently in its own thread


• Requires work to ensure that UI is updated in the main thread

40


