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java.util.concurrent

CSCI 5828: Foundations of Software Engineering

Lecture 25 — 11/15/2016
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Goals

• Explore the services of java.util.concurrent


• ExecutorService


• Callable/Future


• ForkJoinPool and ForkJoinTask


• The examples in this lecture come from the excellent book: Programming 
Concurrency on the JVM from Pragmatic Programmers


• Source Code for these examples is available here:


• https://pragprog.com/book/vspcon/programming-concurrency-on-the-
jvm#links 


• I’m not allowed to distribute it myself
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ExecutorService (I)

• ExecutorService is a Java interface that defines a common set of services for 
an abstract thread pool;


• this interface has a variety of concrete implementations that provide a 
range of concurrent behavior to developers


• What’s a thread pool? (A review)


• Thread creation is a slow process


• Thread pools create a bunch of threads all at once (typically at launch)


• When a new thread is needed, one is taken from the pool and it starts 
executing immediately


• very helpful in situations where, e.g., a server is responding to incoming 
network requests
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ExecutorService (II)

• Static factory methods on the Executors class are used to create instances of 
the ExecutorService; for instance


• CachedThreadPool: creates threads as needed but will reuse previous 
ones if they are available


• FixedThreadPool: creates a fixed set of threads


• ScheduledThreadPool: creates a thread pool that can execute tasks after 
a delay or periodically


• SingleThreadExecutor: creates a thread pool with only a single thread


• You write code that only depends on the interface ExecutorService and 
then be free to select the actual threading behavior you get at run-time  based 
on external factors

• you can even switch threading behaviors on the fly
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ExecutorService (III)

• The API of the ExecutorService allows you to


• submit a single task for execution


• submit a collection of tasks for execution


• where you want all of the tasks results (invokeAll)


• or where you want just one of the results (invokeAny)


• shutdown the thread pool when you are done with it
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Callable/Future: Making this all work

• In order to give tasks to the thread pool and receive results back, you make 
use of two additional interfaces


• Callable<T> and Future<T> 

• Both make use of Java generics to give flexibility in the return types of the 
computation


• For instance, I can promise that my task returns a string


Callable<String> callMe = new Callable<String>() { 

public String call() throws Exception { …; return result; } 

} 

• callMe is now a Task that I can hand to an ExecutorService

6



© Kenneth M. Anderson, 2015

Callable/Future (II)

• When I give callMe to an ExecutorService, it is going to hand the task to a 
thread and ask the thread to execute it


• At the time, we have no idea how long it will take for the task to complete


• Thus, the ExecutorService gives me an instance of Future<String> 
so I can get the value once the task is complete


• Future<String> myString = service.submit(callMe); 

• This call does NOT block, I get a reference to myString almost immediately


• I can then decide to retrieve the string whenever I need it by calling get()


• String result = myString.get(); 

• This call MAY block, if the task is still being executed; otherwise, I get the 
result right away. I can also call a version of get() that accepts a timeout.
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Portfolio Calculator (I)

• A simple program to retrieve stock quotes from Yahoo


• Designed as one abstract superclass AbstractNAV (Net Asset Value)


• methods for


• reading in stock symbols and number of shares


• timing how long it takes to calculate the portfolio


• Two subclasses


• one sequential => loops over list of symbols and calls Yahoo to get 
current price


• one concurrent => creates futures for each stock to retrieve prices; 
hands them all over to an executor service to execute in parallel
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Portfolio Calculator (II)

• Since these tasks are io bound, the program needs to decide how many 
threads it will need


• Each task is going to be blocked for most of its life and then it will do a 
single calculation: numberOfShares * retrievedPrice


• We estimate that waiting for Yahoo to give us the current price is going 
to take about 90% of the task’s life cycle


• So to estimate the number of threads, we use the following formula


• Number of Threads = Number of Cores / (1 - Blocking Coefficient)  

• My machine has 8 cores, so


• 8/(1-0.9) = 8/.1 = 80 threads
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Portfolio Calculator (III)

• It then creates an array to store all of our Callable objects


• final List<Callable<Double>> partitions = new ArrayList<Callable<Double>>(); 

• It populates that List by creating one Callable<Double> for each stock symbol

• It then hands the list over to the executor service which hands back a list 

of Future<Double> objects


• final List<Future<Double>> valueOfStocks = 
executorPool.invokeAll(partitions, 10000, TimeUnit.SECONDS); 

• Finally, it loops over each Future object and totals up the final value

• for (final Future<Double> valueOfAStock : valueOfStocks) { 

• netAssetValue += valueOfAStock.get(); 
• } 

• It is this call to get() that can finally block, waiting for the task to complete
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Portfolio Calculator (IV)

• Let’s see this in action


• As you will see, the concurrent version of the program is significantly faster


• Why? => Latency!


• Each request to Yahoo takes a certain amount of time to create the 
connection, wait for Yahoo to retrieve the data, and stream the result back


• With the sequential version of the program, we take that latency and add it for 
each stock request; say the latency was 2 seconds

• For 80 stocks, we would expect to wait 160 seconds for the whole 

sequential program to complete

• In the concurrent program, all tasks contact Yahoo at the same time, the 2 

second latency for each task overlaps. As a result, the program takes ~2-3 
seconds
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Finding Primes

• The reason we saw such an amazing speed-up with the previous program 
was due to the fact that its tasks were IO-bound.


• With compute-bound tasks, we have to limit the number of threads to the 
number of cores


• Let’s just look at the code to see how it creates a bunch of 
Callable<Integer> tasks that count primes for a given partition


• The executor service then gives us back a list of Future<Integers> and 
we call those to total up the number of primes in a given range
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Coordinating Threads (I)

• A key challenge in the design of concurrent systems is the coordination of 
threads


• We may want to


• start them


• wait for them to finish


• assign tasks to them


• retrieve results from them


• allow threads to exchange data


• etc.
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Coordinating Threads (II)

• With the ExecutorService, the most typical case now involves


• submitting a task to a thread pool of type Callable


• receiving a Future in response


• when ready, calling get() on the Future to retrieve the result


• Let’s see this in action with an example called File Size Calculator


• First, let’s take a look at the sequential version of this program


• Design is straightforward; recursive function that returns either the size for a 
single file or, for directories, the combined size of all of its children
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Disk Cache

• With programs that target the disk, performance will vary


• The first time through a particular section of the disk, the time will be 
slower than subsequent runs on the same section of the disk


• The reason for this is the disk cache


• The operating system will


• take the most recently read sections of disk


• and cache them in memory


• under the assumption that they will be read again fairly soon


• The difference may not be major but it will be there


• First run sequential on /usr: 36.02 seconds; Second run: 27.3 seconds
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First Stab at Concurrency

• Creates a thread pool of 100 threads


• Makes use of recursive function to calculate size of files and directories


• If its handed a file, return the file size


• If its handed a directory


• loop through children


• submit() a task to the thread pool to calculate the size of the child


• Each task is a Callable<Long>


• Thread pool returns a Future<Long> that gets added to an array


• loop through array calling get() on each Future to add up subtotals


• return the result
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Result? DEADLOCK!

• This approach to the program has a flaw that appears on “deep directories”


• Each task adds new tasks to the thread pool and then waits for those tasks 
to return


• That means that the calling task is STILL ON THE POOL


• blocked waiting for its subtasks to complete


• If your directory has lots of subdirectories (more than 100 in this case)


• You can get into the situation where each of the 100 threads in the thread 
pool are blocked waiting for subdirectory calculations to complete


• when this happens, the program deadlocks


• or thanks to the timeout that we set, eventually the timeout fires 
and the program terminates
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Discussion

• This problem is unfortunate because


• the approach is straightforward and understandable


• you’d likely come up with it on a first pass design


• But, a machine’s resources are finite


• you might be able to make this code work on more directories by upping 
the number of threads


• but that approach is not generic


• eventually you’ll run into the limit concerning the number of threads the 
operating system will allow a single process to create


• and you’ll be stuck
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New Approach: Find Directories, Total Later

• To make progress, we need an approach that


• submits tasks for sub-directories


• but doesn’t require the submitting task to hang around for the results


• New Approach


• Create a data structure that holds the total size of a directory’s files and a 
list of all of that directory’s sub-directories


• Tasks now calculate the size of files in their assigned directory and create 
a list of all subdirectories; allowing them to complete and not stick around


• The main thread takes care of submitting new tasks and totaling results


• 6 seconds vs. 36 seconds!
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Terrific Results But...

• increased complexity!


• We got great results but the approach we used is not intuitive


• Creating a class to store partial (immutable) results


• Creating the function executed by tasks such that it completes quickly


• Adopting a while loop strategy in main to iterate while there were 
directories to process


• and then ensuring that the while loop would not terminate until all 
directories had been processed


• Let’s look at features that java.util.concurrent has that might reduce the 
complexity of the code
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CountDownLatch (I)

• The next approach examines the use of a CountDownLatch


• plus it relaxes our constraint to avoid shared mutability


• but it achieves the same results with simpler code


• Simplicity is not to be discounted


• it has significant impacts on the ability to maintain software systems
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CountDownLatch (II)

• What’s a CountDownLatch?


• It is a synchronization aid to help coordinate threads


• It maintains a count and has three primary methods


• CountDownLatch(n) - creates the latch with a specific count


• await() - block the calling thread until the latch’s count == 0 

• countDown() -- decrement the count of the latch


• Typical scenario:


• create a bunch of threads and start() them

• but don’t let them run() until some point in the future


• i.e. have their first line in run() call await()

22



© Kenneth M. Anderson, 2015

New Approach

• Instead of returning subdirectories, we let each task update two shared 
variables


• each an instance of AtomicLong (like AtomicInteger but stores long value)


• One AtomicLong stores the total file size


• The second AtomicLong stores the number of “pending file visits”


• This value gets incremented each time we find a subdirectory to visit


• It gets decremented each time we are done processing a subdirectory


• When this value equals zero, we call countDown() on the latch


• The main thread initializes the latch to a value of 1, starts the directory search, 
and calls await()
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Performance

• Comparable performance to previous approach (4.6 seconds vs 6.1 seconds)


• but with simpler code!
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Third Approach: Queue (I)

• We have seen two approaches for exchanging data between threads


• Callable/Future and Atomic<Type>


• both techniques ensured that we could pass information between threads


• A third approach is to use a data structure such as a queue to pass 
information between threads


• as long as there is space in the queue, producers will not block


• as long as there are items on the queue, consumers will not block


• contention will occur only when the queue is full (producers) or when it is 
empty (consumers)
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Third Approach: Queue (II)

• This version of the program creates a blocking queue with 500 slots


• An atomic long is used to keep track of pending file visits


• Tasks traverse the directories as normal, adding file sizes to the queue and updating 
the atomic long as they submit more tasks to the thread pool


• The main program kicks off the traversal and then sits in a loop


• it reads items off the queue until there are no more file visits pending and the 
queue is empty


• Performance:


• First Run: 4.96 seconds


• Essentially same performance, just slightly different abstractions, perhaps simpler


• not by much
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Java 7: Fork-Join API

• Java 7 introduced a new type of thread pool and task


• ForkJoinPool and ForkJoinTask


• The key benefit of this new thread pool is that threads can steal tasks 
generated by other active tasks


• This solves the problem we encountered with the first approach to the 
concurrent file size calculator


• When a task generates a bunch of other tasks and blocks, its thread can 
let it go and work on the other tasks


• With this approach, we get a program very similar to our “naive” approach


• without the danger for deadlock like we saw before => 5.5 seconds
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Summary

• We learned the ins and outs of using the ExecutorService in various ways


• Saw how Callable and Future work to allow us to pass information 
between threads


• Explored various problems that can still occur when using ExecutorService


• Saw a number of different ways to design the same program


• Performance was usually the same


• What was different was the complexity of each design


• Certain designs provided more simplicity than others


• If two designs perform the same, prefer the one that is less 
complex to make it easier to maintain that solution
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Coming Up Next

• Lecture 25: Refactoring a poorly designed concurrent program written in Java
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