
© Kenneth M. Anderson, 2015

java.util.concurrent

CSCI 5828: Foundations of Software Engineering

Lecture 25 — 11/15/2016

1

© Kenneth M. Anderson, 2015

Goals

• Explore the services of java.util.concurrent

• ExecutorService

• Callable/Future

• ForkJoinPool and ForkJoinTask

• The examples in this lecture come from the excellent book: Programming
Concurrency on the JVM from Pragmatic Programmers

• Source Code for these examples is available here:

• https://pragprog.com/book/vspcon/programming-concurrency-on-the-
jvm#links

• I’m not allowed to distribute it myself

2

https://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm
https://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm
https://pragprog.com
https://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm#links
https://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm#links

© Kenneth M. Anderson, 2015

ExecutorService (I)

• ExecutorService is a Java interface that defines a common set of services for
an abstract thread pool;

• this interface has a variety of concrete implementations that provide a
range of concurrent behavior to developers

• What’s a thread pool? (A review)

• Thread creation is a slow process

• Thread pools create a bunch of threads all at once (typically at launch)

• When a new thread is needed, one is taken from the pool and it starts
executing immediately

• very helpful in situations where, e.g., a server is responding to incoming
network requests

3

© Kenneth M. Anderson, 2015

ExecutorService (II)

• Static factory methods on the Executors class are used to create instances of
the ExecutorService; for instance

• CachedThreadPool: creates threads as needed but will reuse previous
ones if they are available

• FixedThreadPool: creates a fixed set of threads

• ScheduledThreadPool: creates a thread pool that can execute tasks after
a delay or periodically

• SingleThreadExecutor: creates a thread pool with only a single thread

• You write code that only depends on the interface ExecutorService and
then be free to select the actual threading behavior you get at run-time based
on external factors

• you can even switch threading behaviors on the fly

4

© Kenneth M. Anderson, 2015

ExecutorService (III)

• The API of the ExecutorService allows you to

• submit a single task for execution

• submit a collection of tasks for execution

• where you want all of the tasks results (invokeAll)

• or where you want just one of the results (invokeAny)

• shutdown the thread pool when you are done with it

5

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ExecutorService.html

© Kenneth M. Anderson, 2015

Callable/Future: Making this all work

• In order to give tasks to the thread pool and receive results back, you make
use of two additional interfaces

• Callable<T> and Future<T>

• Both make use of Java generics to give flexibility in the return types of the
computation

• For instance, I can promise that my task returns a string

Callable<String> callMe = new Callable<String>() {

public String call() throws Exception { …; return result; }

}

• callMe is now a Task that I can hand to an ExecutorService

6

© Kenneth M. Anderson, 2015

Callable/Future (II)

• When I give callMe to an ExecutorService, it is going to hand the task to a
thread and ask the thread to execute it

• At the time, we have no idea how long it will take for the task to complete

• Thus, the ExecutorService gives me an instance of Future<String>
so I can get the value once the task is complete

• Future<String> myString = service.submit(callMe);

• This call does NOT block, I get a reference to myString almost immediately

• I can then decide to retrieve the string whenever I need it by calling get()

• String result = myString.get();

• This call MAY block, if the task is still being executed; otherwise, I get the
result right away. I can also call a version of get() that accepts a timeout.

7

© Kenneth M. Anderson, 2015

Portfolio Calculator (I)

• A simple program to retrieve stock quotes from Yahoo

• Designed as one abstract superclass AbstractNAV (Net Asset Value)

• methods for

• reading in stock symbols and number of shares

• timing how long it takes to calculate the portfolio

• Two subclasses

• one sequential => loops over list of symbols and calls Yahoo to get
current price

• one concurrent => creates futures for each stock to retrieve prices;
hands them all over to an executor service to execute in parallel

8

© Kenneth M. Anderson, 2015

Portfolio Calculator (II)

• Since these tasks are io bound, the program needs to decide how many
threads it will need

• Each task is going to be blocked for most of its life and then it will do a
single calculation: numberOfShares * retrievedPrice

• We estimate that waiting for Yahoo to give us the current price is going
to take about 90% of the task’s life cycle

• So to estimate the number of threads, we use the following formula

• Number of Threads = Number of Cores / (1 - Blocking Coefficient)

• My machine has 8 cores, so

• 8/(1-0.9) = 8/.1 = 80 threads

9

© Kenneth M. Anderson, 2015

Portfolio Calculator (III)

• It then creates an array to store all of our Callable objects

• final List<Callable<Double>> partitions = new ArrayList<Callable<Double>>();

• It populates that List by creating one Callable<Double> for each stock symbol

• It then hands the list over to the executor service which hands back a list

of Future<Double> objects

• final List<Future<Double>> valueOfStocks =
executorPool.invokeAll(partitions, 10000, TimeUnit.SECONDS);

• Finally, it loops over each Future object and totals up the final value

• for (final Future<Double> valueOfAStock : valueOfStocks) {

• netAssetValue += valueOfAStock.get();
• }

• It is this call to get() that can finally block, waiting for the task to complete

10

© Kenneth M. Anderson, 2015

Portfolio Calculator (IV)

• Let’s see this in action

• As you will see, the concurrent version of the program is significantly faster

• Why? => Latency!

• Each request to Yahoo takes a certain amount of time to create the
connection, wait for Yahoo to retrieve the data, and stream the result back

• With the sequential version of the program, we take that latency and add it for
each stock request; say the latency was 2 seconds

• For 80 stocks, we would expect to wait 160 seconds for the whole

sequential program to complete

• In the concurrent program, all tasks contact Yahoo at the same time, the 2

second latency for each task overlaps. As a result, the program takes ~2-3
seconds

11

© Kenneth M. Anderson, 2015

Finding Primes

• The reason we saw such an amazing speed-up with the previous program
was due to the fact that its tasks were IO-bound.

• With compute-bound tasks, we have to limit the number of threads to the
number of cores

• Let’s just look at the code to see how it creates a bunch of
Callable<Integer> tasks that count primes for a given partition

• The executor service then gives us back a list of Future<Integers> and
we call those to total up the number of primes in a given range

12

© Kenneth M. Anderson, 2015

Coordinating Threads (I)

• A key challenge in the design of concurrent systems is the coordination of
threads

• We may want to

• start them

• wait for them to finish

• assign tasks to them

• retrieve results from them

• allow threads to exchange data

• etc.

13

© Kenneth M. Anderson, 2015

Coordinating Threads (II)

• With the ExecutorService, the most typical case now involves

• submitting a task to a thread pool of type Callable

• receiving a Future in response

• when ready, calling get() on the Future to retrieve the result

• Let’s see this in action with an example called File Size Calculator

• First, let’s take a look at the sequential version of this program

• Design is straightforward; recursive function that returns either the size for a
single file or, for directories, the combined size of all of its children

14

© Kenneth M. Anderson, 2015

Disk Cache

• With programs that target the disk, performance will vary

• The first time through a particular section of the disk, the time will be
slower than subsequent runs on the same section of the disk

• The reason for this is the disk cache

• The operating system will

• take the most recently read sections of disk

• and cache them in memory

• under the assumption that they will be read again fairly soon

• The difference may not be major but it will be there

• First run sequential on /usr: 36.02 seconds; Second run: 27.3 seconds

15

© Kenneth M. Anderson, 2015

First Stab at Concurrency

• Creates a thread pool of 100 threads

• Makes use of recursive function to calculate size of files and directories

• If its handed a file, return the file size

• If its handed a directory

• loop through children

• submit() a task to the thread pool to calculate the size of the child

• Each task is a Callable<Long>

• Thread pool returns a Future<Long> that gets added to an array

• loop through array calling get() on each Future to add up subtotals

• return the result

16

© Kenneth M. Anderson, 2015

Result? DEADLOCK!

• This approach to the program has a flaw that appears on “deep directories”

• Each task adds new tasks to the thread pool and then waits for those tasks
to return

• That means that the calling task is STILL ON THE POOL

• blocked waiting for its subtasks to complete

• If your directory has lots of subdirectories (more than 100 in this case)

• You can get into the situation where each of the 100 threads in the thread
pool are blocked waiting for subdirectory calculations to complete

• when this happens, the program deadlocks

• or thanks to the timeout that we set, eventually the timeout fires
and the program terminates

17

© Kenneth M. Anderson, 2015

Discussion

• This problem is unfortunate because

• the approach is straightforward and understandable

• you’d likely come up with it on a first pass design

• But, a machine’s resources are finite

• you might be able to make this code work on more directories by upping
the number of threads

• but that approach is not generic

• eventually you’ll run into the limit concerning the number of threads the
operating system will allow a single process to create

• and you’ll be stuck

18

© Kenneth M. Anderson, 2015

New Approach: Find Directories, Total Later

• To make progress, we need an approach that

• submits tasks for sub-directories

• but doesn’t require the submitting task to hang around for the results

• New Approach

• Create a data structure that holds the total size of a directory’s files and a
list of all of that directory’s sub-directories

• Tasks now calculate the size of files in their assigned directory and create
a list of all subdirectories; allowing them to complete and not stick around

• The main thread takes care of submitting new tasks and totaling results

• 6 seconds vs. 36 seconds!

19

© Kenneth M. Anderson, 2015

Terrific Results But...

• increased complexity!

• We got great results but the approach we used is not intuitive

• Creating a class to store partial (immutable) results

• Creating the function executed by tasks such that it completes quickly

• Adopting a while loop strategy in main to iterate while there were
directories to process

• and then ensuring that the while loop would not terminate until all
directories had been processed

• Let’s look at features that java.util.concurrent has that might reduce the
complexity of the code

20

© Kenneth M. Anderson, 2015

CountDownLatch (I)

• The next approach examines the use of a CountDownLatch

• plus it relaxes our constraint to avoid shared mutability

• but it achieves the same results with simpler code

• Simplicity is not to be discounted

• it has significant impacts on the ability to maintain software systems

21

© Kenneth M. Anderson, 2015

CountDownLatch (II)

• What’s a CountDownLatch?

• It is a synchronization aid to help coordinate threads

• It maintains a count and has three primary methods

• CountDownLatch(n) - creates the latch with a specific count

• await() - block the calling thread until the latch’s count == 0

• countDown() -- decrement the count of the latch

• Typical scenario:

• create a bunch of threads and start() them

• but don’t let them run() until some point in the future

• i.e. have their first line in run() call await()

22

© Kenneth M. Anderson, 2015

New Approach

• Instead of returning subdirectories, we let each task update two shared
variables

• each an instance of AtomicLong (like AtomicInteger but stores long value)

• One AtomicLong stores the total file size

• The second AtomicLong stores the number of “pending file visits”

• This value gets incremented each time we find a subdirectory to visit

• It gets decremented each time we are done processing a subdirectory

• When this value equals zero, we call countDown() on the latch

• The main thread initializes the latch to a value of 1, starts the directory search,
and calls await()

23

© Kenneth M. Anderson, 2015

Performance

• Comparable performance to previous approach (4.6 seconds vs 6.1 seconds)

• but with simpler code!

24

© Kenneth M. Anderson, 2015

Third Approach: Queue (I)

• We have seen two approaches for exchanging data between threads

• Callable/Future and Atomic<Type>

• both techniques ensured that we could pass information between threads

• A third approach is to use a data structure such as a queue to pass
information between threads

• as long as there is space in the queue, producers will not block

• as long as there are items on the queue, consumers will not block

• contention will occur only when the queue is full (producers) or when it is
empty (consumers)

25

© Kenneth M. Anderson, 2015

Third Approach: Queue (II)

• This version of the program creates a blocking queue with 500 slots

• An atomic long is used to keep track of pending file visits

• Tasks traverse the directories as normal, adding file sizes to the queue and updating
the atomic long as they submit more tasks to the thread pool

• The main program kicks off the traversal and then sits in a loop

• it reads items off the queue until there are no more file visits pending and the
queue is empty

• Performance:

• First Run: 4.96 seconds

• Essentially same performance, just slightly different abstractions, perhaps simpler

• not by much

26

© Kenneth M. Anderson, 2015

Java 7: Fork-Join API

• Java 7 introduced a new type of thread pool and task

• ForkJoinPool and ForkJoinTask

• The key benefit of this new thread pool is that threads can steal tasks
generated by other active tasks

• This solves the problem we encountered with the first approach to the
concurrent file size calculator

• When a task generates a bunch of other tasks and blocks, its thread can
let it go and work on the other tasks

• With this approach, we get a program very similar to our “naive” approach

• without the danger for deadlock like we saw before => 5.5 seconds

27

© Kenneth M. Anderson, 2015

Summary

• We learned the ins and outs of using the ExecutorService in various ways

• Saw how Callable and Future work to allow us to pass information
between threads

• Explored various problems that can still occur when using ExecutorService

• Saw a number of different ways to design the same program

• Performance was usually the same

• What was different was the complexity of each design

• Certain designs provided more simplicity than others

• If two designs perform the same, prefer the one that is less
complex to make it easier to maintain that solution

28

© Kenneth M. Anderson, 2015

Coming Up Next

• Lecture 25: Refactoring a poorly designed concurrent program written in Java

29

