Java.util.concurrent

CSCI 5828: Foundations of Software Engineering
Lecture 25 — 11/15/2016

© Kenneth M. Anderson, 2015

(Goals

« Explore the services of java.util.concurrent
- ExecutorService
- Callable/Future

* ForkdoinPool and ForkdoinTask

* The examples in this lecture come from the excellent book: Programming
Concurrency on the JVM from Pragmatic Programmers

- Source Code for these examples is available here:

- https://pragprog.com/book/vspcon/programming-concurrency-on-the-
Jvm#links

* I’'m not allowed to distribute it myself

© Kenneth M. Anderson, 2015

https://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm
https://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm
https://pragprog.com
https://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm#links
https://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm#links

—xecutorService (|)

« ExecutorService is a Java interface that defines a common set of services for
an abstract thread pool,

* this interface has a variety of concrete implementations that provide a
range of concurrent behavior to developers

- What'’s a thread pool? (A review)
» Thread creation is a slow process
- Thread pools create a bunch of threads all at once (typically at launch)

- When a new thread is needed, one is taken from the pool and it starts
executing immediately

- very helpful in situations where, e.g., a server is responding to incoming
network requests

© Kenneth M. Anderson, 2015

—xecutorService (ll)

- Static factory methods on the Executors class are used to create instances of
the ExecutorService; for instance

- CachedThreadPool: creates threads as needed but will reuse previous
ones if they are available

* FixedThreadPool: creates a fixed set of threads

- ScheduledThreadPool: creates a thread pool that can execute tasks after
a delay or periodically

- SingleThreadExecutor: creates a thread pool with only a single thread

« You write code that only depends on the interface ExecutorService and

then be free to select the actual threading behavior you get at run-time based
on external factors
* you can even switch threading behaviors on the fly

© Kenneth M. Anderson, 2015

—xecutorService (ll)

- The API of the ExecutorService allows you to

» submit a single task for execution

+ submit a collection of tasks for execution
- where you want all of the tasks results (invokeAll)
 or where you want just one of the results (invokeAny)

» shutdown the thread pool when you are done with it

© Kenneth M. Anderson, 2015

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ExecutorService.html

Callable/Future: Making this all work

* In order to give tasks to the thread pool and receive results back, you make
use of two additional interfaces

e Callable<T> and Future<T>

- Both make use of Java generics to give flexibility in the return types of the
computation

* For instance, | can promise that my task returns a string

Callable<String> callMe = new Callable<String>() {

public String call() throws Exception { ..; return result; }

}

« callMe is now a Task that | can hand to an ExecutorService

© Kenneth M. Anderson, 2015

Callable/Future (Il)

* When | give callMe to an ExecutorService, it is going to hand the task to a
thread and ask the thread to execute it

- At the time, we have no idea how long it will take for the task to complete

* Thus, the ExecutorService gives me an instance of Future<String>
so | can get the value once the task is complete

e Future<String> myString = service.submit(callMe);
» This call does NOT block, | get a reference to myString almost immediately
* | can then decide to retrieve the string whenever | need it by calling get ()
e String result = myString.get();

 This call MAY block, if the task is still being executed; otherwise, | get the
result right away. | can also call a version of get () that accepts a timeout.

© Kenneth M. Anderson, 2015

Portfolio Calculator (I)

« A simple program to retrieve stock quotes from Yahoo
« Designed as one abstract superclass AbstractNAV (Net Asset Value)
* methods for
» reading in stock symbols and number of shares
» timing how long it takes to calculate the portfolio
* Two subclasses

+ one sequential => loops over list of symbols and calls Yahoo to get
current price

* one concurrent => creates futures for each stock to retrieve prices;
hands them all over to an executor service to execute in parallel

© Kenneth M. Anderson, 2015

Portfolio Calculator (ll)

 Since these tasks are io bound, the program needs to decide how many
threads it will need

» Each task is going to be blocked for most of its life and then it will do a
single calculation: numberOfShares * retrievedPrice

» We estimate that waiting for Yahoo to give us the current price is going
to take about 90% of the task’s life cycle

« So to estimate the number of threads, we use the following formula

e Number of Threads = Number of Cores / (1 - Blocking Coefficient)

- My machine has 8 cores, so

« 8/(1-0.9) = 8/.1 = 80 threads

© Kenneth M. Anderson, 2015

Portfolio Calculator (ll)

- It then creates an array to store all of our Callable objects

e final List<Callable<Double>> partitions = new ArrayList<Callable<Double>>();

- It populates that List by creating one Callable<Double> for each stock symbol

|t then hands the list over to the executor service which hands back a list
of Future<Double> objects

e Tinal List<Future<Double>> valueOfStocks =
executorPool.invokeAll(partitions, 10000, TimeUnit.SECONDS);

- Finally, it loops over each Future object and totals up the final value

e for (final Future<Double> valueOfAStock : valueOfStocks) {
e netAssetValue += valueOfAStock.get();

o }
- It is this call to get() that can finally block, waiting for the task to complete

© Kenneth M. Anderson, 2015 10

Portfolio Calculator (IV)

« Let’s see this in action

* As you will see, the concurrent version of the program is significantly faster
- Why? => Latency!

- Each request to Yahoo takes a certain amount of time to create the
connection, wait for Yahoo to retrieve the data, and stream the result back

- With the sequential version of the program, we take that latency and add it for
each stock request; say the latency was 2 seconds

+ For 80 stocks, we would expect to wait 160 seconds for the whole
seqguential program to complete

* In the concurrent program, all tasks contact Yahoo at the same time, the 2
second latency for each task overlaps. As a result, the program takes ~2-3

seconds

© Kenneth M. Anderson, 2015

11

FInding Primes

The reason we saw such an amazing speed-up with the previous program
was due to the fact that its tasks were |O-bound.

- With compute-bound tasks, we have to limit the number of threads to the
number of cores

 Let’s just look at the code to see how it creates a bunch of
Callable<Integer> tasks that count primes for a given partition

* The executor service then gives us back a list of Future<Integers> and
we call those to total up the number of primes in a given range

© Kenneth M. Anderson, 2015 12

Coordinating Threads (l)

A key challenge in the design of concurrent systems is the coordination of
threads

- We may want to
- start them
 wait for them to finish
* assign tasks to them
» retrieve results from them
- allow threads to exchange data

- etc.

© Kenneth M. Anderson, 2015

13

Coordinating Threads (ll)

« With the ExecutorService, the most typical case now involves
+ submitting a task to a thread pool of type Callable
* receiving a Future in response
« when ready, calling get () on the Future to retrieve the result
« Let’s see this in action with an example called File Size Calculator

- First, let’s take a look at the sequential version of this program

 Design is straightforward; recursive function that returns either the size for a
single file or, for directories, the combined size of all of its children

© Kenneth M. Anderson, 2015

14

Disk Cache

- With programs that target the disk, performance will vary

 The first time through a particular section of the disk, the time will be
slower than subsequent runs on the same section of the disk

 The reason for this is the disk cache
* The operating system will
- take the most recently read sections of disk
* and cache them in memory
 under the assumption that they will be read again fairly soon
 The difference may not be major but it will be there

« First run sequential on /usr: 36.02 seconds; Second run: 27.3 seconds

© Kenneth M. Anderson, 2015

15

First Stab at Concurrency

 Creates a thread pool of 100 threads
» Makes use of recursive function to calculate size of files and directories
* |f its handed a file, return the file size
- If its handed a directory
* loop through children
- submit() a task to the thread pool to calculate the size of the child

- Eachtaskisa Callable<Long>
» Thread pool returns a Future<Long> that gets added to an array

- loop through array calling get() on each Future to add up subtotals

* return the result

© Kenneth M. Anderson, 2015 16

Result? DEADLOCK!

- This approach to the program has a flaw that appears on “deep directories”

- Each task adds new tasks to the thread pool and then waits for those tasks
to return

- That means that the calling task is STILL ON THE POOL
 blocked waiting for its subtasks to complete
- If your directory has lots of subdirectories (more than 100 in this case)

* You can get into the situation where each of the 100 threads in the thread
pool are blocked waiting for subdirectory calculations to complete

« when this happens, the program deadlocks

- or thanks to the timeout that we set, eventually the timeout fires
and the program terminates

© Kenneth M. Anderson, 2015 17

DISCUSSION

 This problem is unfortunate because
» the approach is straightforward and understandable
» you’d likely come up with it on a first pass design

- But, a machine’s resources are finite

* you might be able to make this code work on more directories by upping
the number of threads

* but that approach is not generic

 eventually you’ll run into the limit concerning the number of threads the
operating system will allow a single process to create

- and you’ll be stuck

© Kenneth M. Anderson, 2015

18

New Approach: Find Directories, Total Later

- To make progress, we need an approach that
« submits tasks for sub-directories
 but doesn’t require the submitting task to hang around for the results

* New Approach

 Create a data structure that holds the total size of a directory’s files and a
list of all of that directory’s sub-directories

 Tasks now calculate the size of files in their assigned directory and create
a list of all subdirectories; allowing them to complete and not stick around

- The main thread takes care of submitting new tasks and totaling results

* 6 seconds vs. 36 seconds!

© Kenneth M. Anderson, 2015 19

Terrific Results But...

* Increased complexity!
« We got great results but the approach we used is not intuitive
 Creating a class to store partial (immutable) results
- Creating the function executed by tasks such that it completes quickly

- Adopting a while loop strategy in main to iterate while there were
directories to process

 and then ensuring that the while loop would not terminate until all
directories had been processed

* Let’s look at features that java.util.concurrent has that might reduce the
complexity of the code

© Kenneth M. Anderson, 2015

20

CountDownLatch (l)

« The next approach examines the use of a CountDownLatch
* plus it relaxes our constraint to avoid shared mutability
 but it achieves the same results with simpler code
- Simplicity is not to be discounted

* it has significant impacts on the ability to maintain software systems

© Kenneth M. Anderson, 2015 21

CountDownLatch (ll)

« What’s a CountDownLatch?
* It Is a synchronization aid to help coordinate threads
- It maintains a count and has three primary methods
« CountDownLatch(n) - creates the latch with a specific count
- await() - block the calling thread until the latch’s count == 0
- countDown () -- decrement the count of the latch
» Typical scenario:

- create a bunch of threads and start () them
* but don’t let them run () until some point in the future
- i.e. have their first line in run () call await ()

© Kenneth M. Anderson, 2015 22

New Approach

Instead of returning subdirectories, we let each task update two shared
variables

 each an instance of AtomicLong (like Atomiclnteger but stores long value)
One AtomiclLong stores the total file size
The second AtomiclLong stores the number of “pending file visits”

 This value gets incremented each time we find a subdirectory to visit

* |t gets decremented each time we are done processing a subdirectory

- When this value equals zero, we call countDown() on the latch

The main thread initializes the latch to a value of 1, starts the directory search,
and calls await()

© Kenneth M. Anderson, 2015 23

Performance

- Comparable performance to previous approach (4.6 seconds vs 6.1 seconds)

* but with simpler code!

© Kenneth M. Anderson, 2015

24

Third Approach: Queue (l)

- We have seen two approaches for exchanging data between threads
« Callable/Future and Atomic<Type>
 both techniques ensured that we could pass information between threads

* A third approach is to use a data structure such as a queue to pass
iInformation between threads

* as long as there is space in the queue, producers will not block
 as long as there are items on the queue, consumers will not block

- contention will occur only when the queue is full (producers) or when it is
empty (consumers)

© Kenneth M. Anderson, 2015

25

Third Approach: Queue (ll)

 This version of the program creates a blocking queue with 500 slots
- An atomic long is used to keep track of pending file visits

- Tasks traverse the directories as normal, adding file sizes to the queue and updating
the atomic long as they submit more tasks to the thread pool

- The main program kicks off the traversal and then sits in a loop

- it reads items off the queue until there are no more file visits pending and the
queue is empty

« Performance:
* First Run: 4.96 seconds
-+ Essentially same performance, just slightly different abstractions, perhaps simpler

* not by much

© Kenneth M. Anderson, 2015 26

Java 7: Fork-doin API

- Java 7 introduced a new type of thread pool and task

« ForkJoinPool and ForkJoinTask

* The key benefit of this new thread pool is that threads can steal tasks
generated by other active tasks

 This solves the problem we encountered with the first approach to the
concurrent file size calculator

* When a task generates a bunch of other tasks and blocks, its thread can
let it go and work on the other tasks

« With this approach, we get a program very similar to our “naive” approach

- without the danger for deadlock like we saw before => 5.5 seconds

© Kenneth M. Anderson, 2015 27

Summary

- We learned the ins and outs of using the ExecutorService in various ways

- Saw how Callable and Future work to allow us to pass information
between threads

« Explored various problems that can still occur when using ExecutorService
- Saw a number of different ways to design the same program
» Performance was usually the same
- What was different was the complexity of each design
 Certain designs provided more simplicity than others

- If two designs perform the same, prefer the one that is less
complex to make it easier to maintain that solution

© Kenneth M. Anderson, 2015 28

Coming Up Next

 Lecture 25: Refactoring a poorly designed concurrent program written in Java

© Kenneth M. Anderson, 2015

29

