
© Kenneth M. Anderson, 2016

Serverless Single Page Web Apps, Part Five

CSCI 5828: Foundations of Software Engineering

Lecture 25 — 11/15/2016

1

© Kenneth M. Anderson, 2016

Goals

• Cover Chapter 5 of Serverless Single Page Web Apps by Ben Rady

• Present an introduction to Amazon's DynamoDB

• Demonstrate how to integrate reading and writing documents to
DynamoDB from LearnJS

2

© Kenneth M. Anderson, 2016

Current Status

• We have a basic serverless single page web app in place

• Displays a set of JavaScript puzzles

• Users can navigate the puzzles

• They can enter a solution and see if it's correct

• They receive visual feedback when submitting their answers

• Users can login to the system using Cognito and Google Plus

• They can also use the system anonymously

• Has all the basic components in place

• events and event handlers, routers, templates, view functions

3

© Kenneth M. Anderson, 2016

What's Next?

• Now that we support user login

• we can demonstrate how our web app can create and access data in a
database

• Not a local database but one accessible via a third-party web service

• Our book makes use of Amazon's DynamoDB

• We will use this database to store any answer that is correct for a question

• When we return to that question, we will access the database and
automatically fill in the correct answer

4

© Kenneth M. Anderson, 2016

Amazon's DynamoDB (I)

• DynamoDB is a NoSQL database service

• It offers

• fast, consistent performance at any scale

• Amazon advertises "single-digit millisecond" service latency

• It provides this via automatic partitioning of data and the use of SSDs

• highly scalable

• Amazon places almost no limits on the tables you create

• You indicate the throughput you need (requests per second) and pay
for that plus storage

• Plus: fully-managed, fine-grain access control, event-driven triggers, and
flexibility: can be used as key-value store or document store.

5

https://aws.amazon.com/dynamodb/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

© Kenneth M. Anderson, 2016

Amazon's DynamoDB (II)

• NoSQL databases

• NoSQL stands for "No SQL" or "Not Only SQL" meaning that it is not

making use of the standard relational model found in RDBMS

• Number of Interesting Capabilities

• A schema is typically not enforced

• One "row" of information may have a completely different set of

attributes from other "rows" in the same "table"

• The database is designed to run on a cluster of machines

• data is automatically distributed among the machines

• often replicated too

• horizontally-scalable: the more machines, the better

• Ad hoc queries are typically not supported

6

© Kenneth M. Anderson, 2016

Amazon's DynamoDB (III)

• Given the cluster-based nature of NoSQL data stores, they often only provide
"eventual consistency" guarantees rather than "strong consistency"

• Example:

• Create a document: {name: "ken", age: 41}

• Store it using the key "ken_anderson"

• Change the document: {name: "ken", age: 42}

• Store it again with the same key

• Ask the database for the document with key "ken_anderson"

• Receive: {name: "ken", age: 41}

• Second Example:

• Popular Facebook posts; view the post one time and see "1000 likes"

• Refresh the post and see "2500 likes"; Click like yourself and see "3700"

7

© Kenneth M. Anderson, 2016

What's going on?

8

Client 1 Client 2

Client 3

ken_anderson: 
{name: "ken", age: 41}

ken_anderson: 
{name: "ken", age: 42}

ken_anderson: 
{name: "ken", age: 42}

write: age: 42read: "ken_anderson"

read: "ken_anderson"

Client 1 will read the
old version of the
document since the
change has not
completely propagated
across the cluster.

© Kenneth M. Anderson, 2016

Amazon's DynamoDB (IV)

• Concepts

• DynamoDB stores items that have an arbitrary set of attributes

• Each attribute has a name and a value

• The only required attributes are its primary key attributes

• The primary key can have either one or two dimensions

• If the primary key has only one dimension, its value must be unique

• This hash primary key will be used to store the item on a server (and
store its replicas on other servers)

• They are stored in an unordered fashion

• Their values can be strings, numbers, or base-64 encoded binary
data.

9

© Kenneth M. Anderson, 2016

Amazon's DynamoDB (V)

• Concepts (continued)

• If the primary key has two dimensions, then

• the first value is called the hash attribute

• the second value is called the range attribute

• items are kept sorted by the range attribute

• it is then possible

• to scan through all values in a table in order

• to submit queries that filter via the range attribute

10

© Kenneth M. Anderson, 2016

Amazon's DynamoDB (VI)

• Limits

• Items can be up to 400KB in size (including all attribute names and values)

• attribute names can be up to 255 bytes

• Need to be careful

• String.length("Århus") => 5

• byte_size("Århus") => 6

• Types

• Attributes can be scalar: number, string, binary, or boolean, or NULL

• Attributes can also be multivalued: StringSet, NumberSet, and BinarySet

• Attributes can have "document types": Lists and Maps

• This means that DynamoDB is very good at storing JSON documents!

11

© Kenneth M. Anderson, 2016

Amazon's DynamoDB (VII)

• Going back to consistency

• DynamoDB provides both eventually consistent reads or strongly
consistent reads

• Strongly consistent reads are more expensive

• You have to purchase more capacity to use them

• They are also more likely to fail; if so, you have to try again

• Eventually consistent reads are the default; they are less expensive and more
likely to succeed

• You just have to understand that they can return out-of-date data

12

© Kenneth M. Anderson, 2016

Creating a Table

• In order to use DynamoDB, you must first create at least one table

• The minimum things that need to be specified are:

• attribute definitions for required attributes; all items must have these
attributes within the table; each item can have more attributes

• You typically only define the attributes that are going to be used as
your primary key

• a key schema that indicates the role ("hash" or "range") for the
attributes that serve as part of the primary key

• the amount of provisioned throughput that your application requires

• specified in terms of read capacity units and write capacity units

• the free tier allows up to 25 read and 25 write capacity units

13

© Kenneth M. Anderson, 2016

Understanding Capacity

• Each read unit gives allows you to perform one strongly consistent read per
second of an item 4KB or less

• or two eventually consistent reads per second of an item 4KB or less

• A write unit allows you to write one item per second of 1KB or less

• These units scale linearly

• If you write one 4KB item in one second, that's 4 write units

• If you read a 24KB item in one second that's 6 read units

• If you ever exceed your capacity, your read/write operation will fail with a
ProvisionedThroughputExceededException

• The book goes into some of the complexities around capacity, especially
with respect to how it gets allocated to your key space (which is split
among multiple partitions)

14

© Kenneth M. Anderson, 2016

Authorization

• Behind the scenes, the sspa script sets up an access policy that allows our
users to apply the following DynamoDB operations to documents they create

• BatchGetItem, BatchWriteItem, DeleteItem, GetItem, PutItem, Query,
UpdateItem

• The policy restricts these items in this way by requiring that a cognito identity
be provided when performing these operations

• This policy ensures that multiple people can use our app and update our table
but never see the data created by another user

• See the book for details

15

© Kenneth M. Anderson, 2016

Using DynamoDB

• We now return to the LearnJS web application

• We are going to update the app such that

• it writes a document to DynamoDB containing the answer to each
question a user answers correctly

• when a correct question is displayed again, our app will read its
associated document and display the correct answer automatically

• As promised, the code that does this makes use of the "refresh" functions we
discussed in Lecture 24 with respect to keeping up-to-date tokens from
Google Plus and Cognito

• The code also makes heavy use of promises to do its job

• Let's take a look!

16

© Kenneth M. Anderson, 2016 17

Generic code
for interacting
with
DynamoDB

We create a
promise and
start a long
running
operation that
will either
reject or
resolve the
promise.

We then return
the promise
so it can be
chained.

© Kenneth M. Anderson, 2016

Saving an Item; Clever code at the end for retry()!

18

© Kenneth M. Anderson, 2016

Adding Save Functionality

• With the two functions above

• the only thing that needs to change in our web app is

• to add a call to the saveAnswer() method

• when checking a submitted answer

• learnjs.saveAnswer(number, answer.val());

• answer points at the DOM element that contains the user's submitted
answer; we use val() to retrieve the actual value

19

© Kenneth M. Anderson, 2016

Loading an Item

20

© Kenneth M. Anderson, 2016

Adding Load Functionality

• To load a previously saved correct answer, we add the following code to the
problemView() view function

• This code is a brilliant example of closures and promises

• The answer DOM element is captured in a closure

• We call fetch and do not really care if the view gets updated or not

• IF the call succeeds, then the promise will make sure that the answer
DOM element is updated at some point "later"

21

© Kenneth M. Anderson, 2016

Viewing the Table

• The documents being stored in our table can be viewed via the AWS Console

22

© Kenneth M. Anderson, 2016

Summary

• In this chapter, we have touched on a number of topics

• Amazon's DynamoDB

• a distributed document database with configurable read/write capacity

• configurable read semantics: consistent or eventually consistent

• flexible document storage, no schema imposed on attributes

• with the exception of identifying the attributes that serve as the
primary key and range key

• Use of promises to read/write DynamoDB documents with error handling

• Next Time: Implementing Microservices in Amazon's Lambda

23

