Serverless Single Page Web Apps,

Part

CSCI 5828: Foundations of Software Engineering

Lecture 25 — 11/15/2016

© Kenneth M. Anderson, 2016

-lve

(Goals

« Cover Chapter 5 of Serverless Single Page Web Apps by Ben Rady
* Present an introduction to Amazon's DynamoDB

- Demonstrate how to integrate reading and writing documents to
DynamoDB from LearndS

© Kenneth M. Anderson, 2016

Current Status

- We have a basic serverless single page web app in place

 Displays a set of JavaScript puzzles

» Users can navigate the puzzles

* They can enter a solution and see if it's correct

* They receive visual feedback when submitting their answers

» Users can login to the system using Cognito and Google Plus

* They can also use the system anonymously
- Has all the basic components in place

» events and event handlers, routers, templates, view functions

© Kenneth M. Anderson, 2016

What's Next?

* Now that we support user login

* we can demonstrate how our web app can create and access data in a
database

* Not a local database but one accessible via a third-party web service

* Our book makes use of Amazon's DynamoDB

» We will use this database to store any answer that is correct for a question

* When we return to that question, we will access the database and
automatically fill in the correct answer

© Kenneth M. Anderson, 2016

Amazon's

Dynamo

D

3 (1

* DynamoDB is a NoSQL database service

* |t offers

- fast, consistent performance at any scale

- Amazon advertises "single-digit millisecond"” service latency

* It provides this via automatic partitioning of data and the use of SSDs

- highly scalable

- Amazon places almost no limits on the tables you create

* You indicate the throughput you need (requests per second) and pay
for that plus storage

* Plus: fully-managed, fine-grain access control, event-driven triggers, and
flexibility: can be used as key-value store or document store.

© Kenneth M. Anderson, 2016

https://aws.amazon.com/dynamodb/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

Amazon's DynamoDB (ll)

« NoSQL databases

* NoSQL stands for "No SQL" or "Not Only SQL" meaning that it is not
making use of the standard relational model found in RDBMS

* Number of Interesting Capabilities
* A schema is typically not enforced

* One "row" of information may have a completely different set of
attributes from other "rows" in the same "table”

» The database is designed to run on a cluster of machines
- data is automatically distributed among the machines
- often replicated too
* horizontally-scalable: the more machines, the better

- Ad hoc queries are typically not supported

© Kenneth M. Anderson, 2016

Amazon's DynamoDB (lll)

 Given the cluster-based nature of NoSQL data stores, they often only provide
"eventual consistency"” guarantees rather than "strong consistency”

- Example:
» Create a document: {name: "ken", age: 41}
» Store it using the key "ken_anderson”
» Change the document: {name: "ken", age: 42}
» Store it again with the same key
* Ask the database for the document with key "ken_anderson”
* Receive: {name: "ken", age: 41}
« Second Example:
* Popular Facebook posts; view the post one time and see "1000 likes"

* Refresh the post and see "2500 likes"; Click like yourself and see "3700"

© Kenneth M. Anderson, 2016

What's going on?

Client 1

'\read: "ken_anderson”

4)

ken_anderson:
{name: "ken", age: 41}

_

N

—

read: "ken_anderson”

Client 2

write: age: 42‘/

-

~
ken_anderson:
{name: "ken", age: 42}
_J

—

Client 3

© Kenneth M. Anderson, 2016

_

{name: "ken", age: 42}

\
ken_anderson:

_J

/ Client 1 will read the

old version of the
document since the
change has not
completely propagated
across the cluster.

Amazon's DynamoDB (V)

« Concepts
- DynamoDB stores items that have an arbitrary set of attributes
- Each attribute has a name and a value
* The only required attributes are its primary key attributes
* The primary key can have either one or two dimensions
- If the primary key has only one dimension, its value must be unique

* This hash primary key will be used to store the item on a server (and
store its replicas on other servers)

* They are stored in an unordered fashion

 Their values can be strings, numbers, or base-64 encoded binary
data.

© Kenneth M. Anderson, 2016

Amazon's DynamoDB (V)

» Concepts (continued)
- If the primary key has two dimensions, then
* the first value is called the hash attribute
 the second value is called the range attribute
* items are kept sorted by the range attribute
* it is then possible
* to scan through all values in a table in order

- to submit queries that filter via the range attribute

© Kenneth M. Anderson, 2016

10

Amazon's

* Limits

Dynamo

3 (V)

* Items can be up to 400KB in size (including all attribute names and values)

- attribute names can be up to 255 bytes

* Need to be careful
+ String.length("Arhus") => 5
+ byte size("Arhus") => 6

* Types

* Attributes can be scalar: number, string, binary, or boolean, or NULL

» Attributes can also be multivalued: StringSet, NumberSet, and BinarySet

* Attributes can have "document types”: Lists and Maps

* This means that DynamoDB is very good at storing JSON documents!

© Kenneth M. Anderson, 2016 11

Amazon's DynamoDB (VII)

Going back to consistency

- DynamoDB provides both eventually consistent reads or strongly
consistent reads

Strongly consistent reads are more expensive
* You have to purchase more capacity to use them

They are also more likely to fail; if so, you have to try again

Eventually consistent reads are the default; they are less expensive and more
likely to succeed

* You just have to understand that they can return out-of-date data

© Kenneth M. Anderson, 2016

12

Creating a Table

* In order to use DynamoDB, you must first create at least one table
- The minimum things that need to be specified are:

» attribute definitions for required attributes; all items must have these
attributes within the table; each item can have more attributes

* You typically only define the attributes that are going to be used as
your primary key

 a key schema that indicates the role ("hash" or "range") for the
attributes that serve as part of the primary key

* the amount of provisioned throughput that your application requires
» specified in terms of read capacity units and write capacity units

* the free tier allows up to 25 read and 25 write capacity units

© Kenneth M. Anderson, 2016 13

Understanding Capacity

« Each read unit gives allows you to perform one strongly consistent read per
second of an item 4KB or less

* or two eventually consistent reads per second of an item 4KB or less
A write unit allows you to write one item per second of 1KB or less
* These units scale linearly

- If you write one 4KB item in one second, that's 4 write units

* If you read a 24KB item in one second that's 6 read units

* If you ever exceed your capacity, your read/write operation will fail with a
Provisioned ThroughputExceededException

* The book goes into some of the complexities around capacity, especially
with respect to how it gets allocated to your key space (which is split
among multiple partitions)

© Kenneth M. Anderson, 2016 14

Authorization

» Behind the scenes, the sspa script sets up an access policy that allows our
users to apply the following DynamoDB operations to documents they create

- BatchGetltem, BatchWriteltem, Deleteltem, Getltem, Putltem, Query,
Updateltem

* The policy restricts these items in this way by requiring that a cognito identity
be provided when performing these operations

 This policy ensures that multiple people can use our app and update our table
but never see the data created by another user

« See the book for details

© Kenneth M. Anderson, 2016 15

Using DynamoDB

« We now return to the LearndS web application

- We are going to update the app such that

- it writes a document to DynamoDB containing the answer to each
question a user answers correctly

* when a correct question is displayed again, our app will read its
associated document and display the correct answer automatically

* As promised, the code that does this makes use of the "refresh” functions we
discussed in Lecture 24 with respect to keeping up-to-date tokens from

Google Plus and Cognito

* The code also makes heavy use of promises to do its job

» Let's take a look!

© Kenneth M. Anderson, 2016

16

Generic code
for interacting
with
DynamoDB

We create a
promise and
start a long
running
operation that
will either
reject or
resolve the
promise.

We then return
the promise
SO It can be
chained.

learnjs.sendDbRequest = function(req, retry) <
var promise = new $.Deferred();
reg.on('error', function(error) {
if (error.code === "CredentialsError") A
learnjs.identity.then(function(identity) <
return identity.refresh().then(
function() {
return retry();
}
function() {
promise.reject(resp);

r);
)
y else {
promise.reject(error);
¥
r);
req.on('success', function(resp) {
promise.resolve(resp.data);
)
req.send();
return promise;

Saving an Item; Clever code at the end for retry()!

learnjs.saveAnswer = function(problemId, answer) {
return learnjs. identity.then(function(identity) {
var db = new AWS.DynamoDB.DocumentClient();
var item = {
TableName: 'learnjs’,
Item: {
userld: 1dentity. id,
problemId: problemld,
answer: answer

¥

e

return learnjs.sendDbRequest(db.put(item), function() <
return learnjs.saveAnswer(problemId, answer);

© Kenneth M. Anderson, 2016

Adding Save Functionality

- With the two functions above
* the only thing that needs to change in our web app is
 to add a call to the saveAnswer() method
- when checking a submitted answer
e learnjs.saveAnswer (number, answer.val());

« answer points at the DOM element that contains the user's submitted
answer; we use val () to retrieve the actual value

© Kenneth M. Anderson, 2016

19

Loading an ltem

learnjs. fetchAnswer = function(problemId) <
return- learnjs. identity.then(function(identity) {
var db = new AWS.DynamoDB.DocumentClient();
var item = {
TableName: 'learnjs’,
Key: A
userId: identity.id,
problemId: problemId
¥
i
return learnjs.sendDbRequest(db.get(item), function() A
return learnjs.fetchAnswer(problemId);

r);
s

© Kenneth M. Anderson, 2016

Adding Load Functionality

 To load a previously saved correct answer, we add the following code to the
problemView() view function

learnjs. fetchAnswer(number).then(function(data) A
if (data.Item) {
answer.val(data.Item.answer):

r);

* This code is a brilliant example of closures and promises

« The answer DOM element is captured in a closure
- We call fetch and do not really care if the view gets updated or not

* |IF the call succeeds, then the promise will make sure that the answer
DOM element is updated at some point "later”

© Kenneth M. Anderson, 2016 21

Viewing the Table

* The documents being stored in our table can be viewed via the AWS Console

DynamoDB : learnjs Close
4 Create table Actions v
Dashboard

Overview Items Metrics Alarms Capacity Indexes Triggers

Tables Q X
Reserved capacit i
pacity e . Create item Actions v
® leanjs Scan: [Table] learnjs: userid, problemid A

[Table] learnjs: userld, problemid

Start search

userid problemid answer
us-east-1:66519666-6817-449a-9a0(2 7
us-east-1:66519666-6817-449a-9a0(3 list[O]

© Kenneth M. Anderson, 2016

Summary

* In this chapter, we have touched on a number of topics
- Amazon's DynamoDB
- a distributed document database with configurable read/write capacity
» configurable read semantics: consistent or eventually consistent
- flexible document storage, no schema imposed on attributes

- with the exception of identifying the attributes that serve as the
primary key and range key

» Use of promises to read/write DynamoDB documents with error handling

* Next Time: Implementing Microservices in Amazon's Lambda

© Kenneth M. Anderson, 2016

23

