
© Kenneth M. Anderson, 2016

Serverless Single Page Web Apps, Part Four

CSCI 5828: Foundations of Software Engineering

Lecture 24 — 11/10/2016

1

© Kenneth M. Anderson, 2016

Goals

• Cover Chapter 4 of Serverless Single Page Web Apps by Ben Rady

• Present the issues related to managing user accounts in web apps

• Introduce the notion of a federated identity service

• Look at a specific example: AWS Cognito

• Demonstrate how Cognito can be integrated into learnjs

• Making use of Google+ as an identity provider

2

© Kenneth M. Anderson, 2016

Identity in Web Applications (I)

• Many web applications require some way to identify the user that is
accessing them

• This allows them to

• customize their display for each individual user, and

• it allows them to maintain data for each individual user

• You often see identity manifested in web apps using the phrase "profile"

3

© Kenneth M. Anderson, 2016

Identity in Web Applications (II)

• Typically, identity is managed using browser cookies

• When you login to an application

• your identity gets stored in a "cookie"

• that bit of metadata gets associated with your web app's origin

• i.e. if your web app sits at: http://example.com/

• then your origin is "example.com"

• the browser then automatically sends that cookie along with any HTTP
request that is sent to its origin

• The problem is that this approach requires all of your app's web services to
be from the same origin in order to get access to that cookie

4

http://example.com/
http://example.com

© Kenneth M. Anderson, 2016

Identity in Web Applications (III)

• If, however, you use an external web service to manage your user identities,
the need to deal with "origin" goes away

• If you receive security credentials from a third-party web service, and

• keep them within your front-end web application

• (i.e. running within a user's browser)

• then you can use a wide array of services directly from the browser

• Furthermore, all the difficulties associated with managing identities get shifted
to the developers who provide an identity web service

• You get to benefit from their hard work and simply make use of their
service!

• One such service is Amazon's Cognito.

5

https://aws.amazon.com/cognito/

© Kenneth M. Anderson, 2016

Amazon's Cognito

• Cognito manages identity via identity federation

• We can use identities from a variety of identity providers…

• Facebook, Google, etc.

• and link them to a single identity record created by Cognito

• An identity record is stored inside an identity pool

• Users within a pool can be granted access to AWS via policies based on a
number of criteria

• Once our user has added their identity to our application's pool, our app can
then make authenticated requests on their behalf

6

© Kenneth M. Anderson, 2016

Implementation Concerns

• Normally, you would have to store user identity information in a database

• You would have to worry about keeping that information secure

• i.e. storing passwords that have been "properly salted and hashed"!

• Instead, once we have an identity token from Cognito, we simply store it
alongside any data that we create in third-party web services

• Then, when we retrieve our user's data from that service, we have the
information we need to then make calls to other services

• We'll see examples of that in future chapters

• With Cognito, we can avoid having to manage user passwords and instead
focus on the features of our application

7

© Kenneth M. Anderson, 2016

Using Cognito

• Our basic process will be the following

• We first get a unique identifier from an identity provider

• We will be using Google for this

• Once we have that id, we can associate it with a Cognito identity

• We can then use that identity to get the credentials we need to access
AWS

• Working with other identity providers will be similar but each one has a
different process for getting the unique id

• This goes back to one of the limitations that we discussed in Lecture 20

• Vendor Lock In

8

© Kenneth M. Anderson, 2016

Workflows (I): Getting our Cognito Identity

9

App Provider

Cognito

1. Login; get id

2. send id; request identity 3. validate id
4. return identity

© Kenneth M. Anderson, 2016

Workflows (II): Getting our Cognito Identity

10

App Provider

Cognito

4. Make call

1. request credentials 2. validate/refresh id
3. return credentials

AWS

© Kenneth M. Anderson, 2016

Using Google+ Sign In

• To use Google+ as an identity provider

• You have to create a "project" on the Google Developers Console

• Once you have a project created, you can then enable the Google+ API

• Then, you can select Credentials and click over to the OAuth consent

screen. This screen will be used to represent your app.

• Basically, the screen that will tell your user that "such and such an app is

asking for you to sign in"

• See page 74 of the textbook for help with this step

• You will need to make sure that the URLs entered into the app include at
least two different domains: localhost and your AWS deployment domain

• Look at the screenshot on page 74 for help!

• At the end of this process, we need a Google+ client id

11

© Kenneth M. Anderson, 2016

Identity Pool

• The next step is to create a Cognito Identity Pool

• It plays the role of a "users" database table in traditional web apps

• There is no limit to the number of users within an identity pool

• and you can share identity pools across multiple web apps

• which lets your users share data between them

• We take the Google client id from the previous slide and we plug it into the file
at conf/cognito/identity_pools/learnjs/config.json

• We then run the command

• ./sspa create_pool conf/cognito/identity_pools/learnjs

• This creates a number of files that will allow our users to login and access
other AWS services; see the book for details

12

© Kenneth M. Anderson, 2016

AWS Cognito Screenshots

13

© Kenneth M. Anderson, 2016

Getting a Google Identity

• There are a number of steps to configure our web app to make use of Google
as an identity provider

• We need

• to load a new Javascript library

• to list our client id in our page's metadata

• to create a JavaScript function that handles a callback from Google

• to create a div for Google's "connect" button

• Then, we'll be at a place where we can pass the identity we get from Google
to AWS to add our user to our identity pool

14

© Kenneth M. Anderson, 2016

Doing the Work (I): Add JavaScript Library

• We add this line to the head tag of index.html

• <script src="https://apis.google.com/js/platform.js" async defer></script>

15

© Kenneth M. Anderson, 2016

Doing the Work (II): Add Metadata

• Next we add a meta tag to index.html to identify our Google Client Id

• <meta name="google-signin-client_id" content="<INSERT ID>" />

• This is the id that you got when following the steps on slide 11

16

© Kenneth M. Anderson, 2016

Doing the Work (III): Define Callback Function

• Now we add a function that will handle the callback from Google

function googleSignIn() {
 console.log(arguments);
}

• Note: this function lives in the GLOBAL namespace

• It does NOT go inside of our learnjs namespace

• For now, all this function does is print out its arguments. This lets us test that
our connection to Google is up and running

17

© Kenneth M. Anderson, 2016

Doing the Work (IV): Add Google Connect Button

• Now we need to add a place for Google's connect button to appear

• Here, we add a span with a class "g-signin2" that allows Google's Javascript
library to find it and add its button

• We then add some css to define what "navbar-padding" means

• Note: I changed the book's CSS to read: padding: 10px 10px

18

© Kenneth M. Anderson, 2016

Reload the Browser and…

19

Boom!

© Kenneth M. Anderson, 2016

Push the magic button…

20

© Kenneth M. Anderson, 2016

Enter your e-mail and password…

21

© Kenneth M. Anderson, 2016

Click Allow…

• Two things happen

• Our "sign in" button changes

• And, we see output on the developer console

• indicating that our callback function was, in fact, called!

• Note: we're not actually signed in since we didn't keep the token

• Now, we need to add code that does something with the information that
Google provides

22

© Kenneth M. Anderson, 2016

First Step: Update our AWS configuration (I)

• Our prepared environment automatically adds the AWS JavaScript library to
our application.

• Now that we have a credential from Google, we need to update it's internal
configuration information

• it will then be in a state where it can make the appropriate calls to
Cognito to get an identity that we can then use to access AWS services

• To do that, first, we add our pool id to our learnjs namespace

var learnjs = {
 poolId: '<INSERT POOL ID HERE>'
};

• Then, we need to modify our googleSignIn() function

23

© Kenneth M. Anderson, 2016

First Step: Update our AWS configuration (II)

• Here we get an identity token from Google Plus and then we update our local
configuration information with a new set of Cognito credentials

24

© Kenneth M. Anderson, 2016

Second Step: Handle Token Refresh (I)

• The token provided by Google has a one-hour lifetime

• after that, it expires, and Cognito can't make use of it

• When we detect that it has expired, we need code that will call Google and
get a new token.

• We then have to update our configuration to use the new token

• One challenge with all of this is that these calls can take an indeterminate
amount of time

• If we discover that the credentials have expired when making a web

service call (which we'll do in subsequent chapters), then we need a way
to specify that our app should go update the token (however long that
takes) and then complete the action that was in progress

• How are we EVER going to chain all of these asynchronous requests

together?

25

© Kenneth M. Anderson, 2016

Promises to the rescue!

• The book makes use of promise objects returned by the Google API and
jQuery deferred objects (which act like promises) to solve this problem!

• First, we create a function inside of googleSignIn called refresh()

• It handles getting a new token from Google and then updating AWS

26

© Kenneth M. Anderson, 2016

Refreshing AWS

• To update our AWS credentials, we then use this function

• Here, we create a promise and start a long-running function that will resolve
when we get our updated credentials back from Cognito.

27

© Kenneth M. Anderson, 2016

Making use of the credentials

• The last step is to configure our app to make use of the credentials

• We'll create an identity object that is, itself, a promise

• learnjs.identity = new $.Deferred();

• Then, we update the googleSignIn function to resolve this promise and
supply a value that contains everything we need to make use AWS

28

© Kenneth M. Anderson, 2016

Understanding the Chain

• It is important that you understand the chain of promise objects created to
handle this refresh process

• The Google signin method is called by Google when the connect button is
picked and the user clicks approve

• googleSignIn() calls awsRefresh() and registers a then() callback on it.

• awsRefresh creates a promise object, invokes a long running operation on
it (updating our AWS credentials), and then returns the promise

• when that resolves, the then() handler fires and that resolves our identity
object that will be used soon to list the e-mail address associated with the
connected account

• Workflow: user clicks button => awsRefresh() => then() => learnjs.identity

• token goes invalid => refresh() => awsRefresh() => then() => learnjs.identity

29

© Kenneth M. Anderson, 2016

Seeing the Chain in Action (I)

• We've set up the promise chain to ensure that our identity object has the
connected user's e-mail address stored in a property

• Let's create a view that displays that property when it is available

• First, we need to create a view function to display the e-mail address

30

© Kenneth M. Anderson, 2016

Seeing the Chain in Action (II)

• Next, we create the profile-view template

• and, add a route that maps a url to that view

• '#profile': learnjs.profileView,

• and update our appOnReady() function to register a done handler on the
identity object

• learnjs.identity.done(learnjs.addProfileLink);

31

© Kenneth M. Anderson, 2016

Seeing the Chain in Action (III)

• Finally, implement the addProfileLink method

• and add a new template called profile-link that will be used to add a link next
to the sign-in button which takes you to the profile view.

• The result: the e-mail address of the associated identity is displayed, both in
the navbar and the profile view

• Currently, there is no way to sign out

32

© Kenneth M. Anderson, 2016

Summary

• In this chapter, we have touched on a number of topics

• federated identity services and Cognito

• multiple identity providers

• Workflows for handling identity acquisition

• Use of promises to ensure that profile info is not allowed to populate a
view until we're sure that identity acquisition is over (and did succeed)

• Next Time: Storing Data in Dynamo DB

33

