Serverless Single Page Web Apps,

Part

CSCI 5828: Foundations of Software Engineering

Lecture 24 — 11/10/2016

© Kenneth M. Anderson, 2016

—Our

(Goals

« Cover Chapter 4 of Serverless Single Page Web Apps by Ben Rady
* Present the issues related to managing user accounts in web apps
* Introduce the notion of a federated identity service
 Look at a specific example: AWS Cognito
* Demonstrate how Cognito can be integrated into learnjs

- Making use of Google+ as an identity provider

© Kenneth M. Anderson, 2016

|[dentity in Web Applications (l)

- Many web applications require some way to identify the user that is
accessing them

* This allows them to
 customize their display for each individual user, and
* it allows them to maintain data for each individual user

* You often see identity manifested in web apps using the phrase "profile"

© Kenneth M. Anderson, 2016

|[dentity in Web Applications (lI)

* Typically, identity is managed using browser cookies
* When you login to an application
* your identity gets stored in a "cookie”

» that bit of metadata gets associated with your web app's origin

* i.e. if your web app sits at: http://example.com/

- then your origin is "example.com”

* the browser then automatically sends that cookie along with any HTTP
request that is sent to its origin

* The problem is that this approach requires all of your app's web services to
be from the same origin in order to get access to that cookie

© Kenneth M. Anderson, 2016

http://example.com/
http://example.com

[dentity in Web Applications (lI)

- If, however, you use an external web service to manage your user identities,
the need to deal with "origin" goes away

* If you receive security credentials from a third-party web service, and
» keep them within your front-end web application

* (i.e. running within a user's browser)
* then you can use a wide array of services directly from the browser

* Furthermore, all the difficulties associated with managing identities get shifted
to the developers who provide an identity web service

* You get to benefit from their hard work and simply make use of their
service!

* One such service is Amazon's Cognito.

© Kenneth M. Anderson, 2016

https://aws.amazon.com/cognito/

Amazon's Cognito

» Cognito manages identity via identity federation
- We can use identities from a variety of identity providers...
» Facebook, Google, etc.
- and link them to a single identity record created by Cognito
* An identity record is stored inside an identity pool

 Users within a pool can be granted access to AWS via policies based on a
number of criteria

* Once our user has added their identity to our application's pool, our app can
then make authenticated requests on their behalf

© Kenneth M. Anderson, 2016

Implementation Concerns

- Normally, you would have to store user identity information in a database
* You would have to worry about keeping that information secure
* |.e. storing passwords that have been "properly salted and hashed"!

* Instead, once we have an identity token from Cognito, we simply store it
alongside any data that we create in third-party web services

* Then, when we retrieve our user's data from that service, we have the
iInformation we need to then make calls to other services

« We'll see examples of that in future chapters

» With Cognito, we can avoid having to manage user passwords and instead
focus on the features of our application

© Kenneth M. Anderson, 2016

Using Cognito

 Our basic process will be the following
« We first get a unique identifier from an identity provider
» We will be using Google for this
* Once we have that id, we can associate it with a Cognito identity

- We can then use that identity to get the credentials we need to access
AWS

- Working with other identity providers will be similar but each one has a
different process for getting the unique id

 This goes back to one of the limitations that we discussed in Lecture 20

* VVendor Lock In

© Kenneth M. Anderson, 2016

Workflows (I): Getting our Cognito ldentity

2. send id; request identity

4, return identity

App

1. Login; get id

A

3. validate Id

>

Provider

A

y

Cognito

© Kenneth M. Anderson, 2016

Workflows (Il): Getting our Cognito Identity

AWS

4. Make call

1. request credentials
3. return credentials

App

A

Provider

A

2. validate/refresh id

y

Cognito

© Kenneth M. Anderson, 2016

10

Using Google+ Sign In

» To use Google+ as an identity provider
* You have to create a "project" on the Google Developers Console
* Once you have a project created, you can then enable the Google+ API

* Then, you can select Credentials and click over to the OAuth consent
screen. This screen will be used to represent your app.

- Basically, the screen that will tell your user that "such and such an app is
asking for you to sign in"

* See page 74 of the textbook for help with this step

* You will need to make sure that the URLs entered into the app include at
least two different domains: localhost and your AWS deployment domain

* Look at the screenshot on page 74 for help!

At the end of this process, we need a Google+ client id

© Kenneth M. Anderson, 2016

11

|[dentity Pool

* The next step is to create a Cognito Identity Pool
* It plays the role of a "users" database table in traditional web apps
* There is no limit to the number of users within an identity pool
* and you can share identity pools across multiple web apps
* which lets your users share data between them

+ We take the Google client id from the previous slide and we plug it into the file
at conf/cognito/identity_pools/learnjs/config.json

* We then run the command
» ./sspa create_pool conf/cognito/identity_pools/learnjs

* This creates a number of files that will allow our users to login and access
other AWS services; see the book for details

© Kenneth M. Anderson, 2016 12

AWS Cognito Screenshots

ﬁ AWS v Services v Edit v Ken Anderson ¥ N. Virginia ¥ Support v

r:il Federated Identities learnjs ~ Edit identity pool

|dentity pool

You have not specified roles for this identity pool. Click here to fix it.

Dashboard
Sample code - _
Identities this month e Authentication methods e

Identity browser .

0 Cognito Sync helps you sync user data across Google Sign-in (NG 100.0% 2

devices. Get started using the Mobile SDK:
Total identities e Android, iOS
2

AWS v Services v Edit v Ken Anderson ¥ N. Virginia ¥ Support v

r:il Federated Identities learnjs ~ Edit identity pool

Identity pool i
b |dentities

Dashboard

Sample code Search by Identity ID Search

Identity browser

Results per page 10~ Showing 1 -2 of 2

Identity ID Date created (UTC) Linked logins
us-east-1:4c5bf74a-fb00-4d7e-9ef8-623ae55432a2 2016-08-10T01:51:38Z 1
us-east-1:76a9eafe-ad27-413a-a331-474d2fd49f%e 2016-08-09T17:29:47Z 1

Showing 1 -2 of 2

© Kenneth M. Anderson, 2016 13

Getting a Google |dentity

* There are a number of steps to configure our web app to make use of Google
as an identity provider

- We need
- to load a new Javascript library
* to list our client id in our page's metadata
» to create a JavaScript function that handles a callback from Google
* to create a div for Google's "connect" button

* Then, we'll be at a place where we can pass the identity we get from Google
to AWS to add our user to our identity pool

© Kenneth M. Anderson, 2016

14

Doing the Work (l): Add JavaScript Library

» We add this line to the head tag of index.html

» <script src="https://apis.google.com/js/platform.js" async defer></script>

© Kenneth M. Anderson, 2016

15

Doing the Work (ll): Add Metadata

* Next we add a meta tag to index.html to identify our Google Client Id
* <meta name="google-signin-client_id" content="<INSERT ID>" />

 This is the id that you got when following the steps on slide 11

© Kenneth M. Anderson, 2016

16

Doing the Work (lll): Define Callback Function

* Now we add a function that will handle the callback from Google

function googleSignIn() {
console. log(arguments) ;

}

 Note: this function lives in the GLOBAL namespace
* It does NOT go inside of our learnjs namespace

- For now, all this function does is print out its arguments. This lets us test that
our connection to Google is up and running

© Kenneth M. Anderson, 2016 17

Doing the Work (IV): Add Google Connect Button

* Now we need to add a place for Google's connect button to appear

<div class='nav-container no-select fixed-top u-full-width'>
<ul class="inline-list hover—-links nav-list six columns'>
LearnlJS</11i>
Start</l1i>

<div class="'four columns'>

</div>

- Here, we add a span with a class "g-signin2" that allows Google's Javascript
library to find it and add its button

* We then add some css to define what "navbar-padding” means

* Note: | changed the book's CSS to read: padding: 10px 10px

© Kenneth M. Anderson, 2016 18

Reload the Browser and...

€ () | localhost

LearnJS Start

at atime.

START NOW!

Boom!

Learn JavaScript, one puzzle

© Kenneth M. Anderson, 2016

19

2ush the magic button...

Google

One account. All of Google.

Sign in with your Google Account

Enter your email

Find my account

Create account

One Google Account for everything Google

© Kenneth M. Anderson, 2016

20

—nter your e-mail and password...

©) google.com

GO gle kenbod@gmail.com ~

~ LearnJS would like to:

; View your email address
; View your basic profile info

By clicking Allow, you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can

change this and other Account Permissions at any time.

© Kenneth M. Anderson, 2016

21

Click Allow...

« Two things happen
J PP G Signed in

* QOur "sign in" button changes
- And, we see output on the developer console

* indicating that our callback function was, in fact, called!

- Note: we're not actually signed in since we didn't keep the token

* Now, we need to add code that does something with the information that
Google provides

© Kenneth M. Anderson, 2016 22

First Step: Update our AWS configuration (l)

* Our prepared environment automatically adds the AWS JavaScript library to
our application.

* Now that we have a credential from Google, we need to update it's internal
configuration information

* it will then be in a state where it can make the appropriate calls to
Cognito to get an identity that we can then use to access AWS services

 To do that, first, we add our pool id to our learnjs namespace

var learnjs = {
poolId: '<INSERT POOL ID HERE>'

s

« Then, we need to modify our googleSignIn() function

© Kenneth M. Anderson, 2016 23

First Step: Update our AWS configuration (ll)

function googleSignIn(googleUser) {
var 1d_ token = googleUser getAuthResponse().id token;
AWS. config.update({

region: 'us-— east i
credentials: new AWS.CognitoIdentityCredentials(<
IdentityPoolId: learnjs.poolld,
Logins: A
'accounts.google.com': id_token }

* Here we get an identity token from Google Plus and then we update our local

configuration information with a new set of Cognito credentials

© Kenneth M. Anderson, 2016

Second Step: Handle Token Refresh (1)

* The token provided by Google has a one-hour lifetime
- after that, it expires, and Cognito can't make use of it

* When we detect that it has expired, we need code that will call Google and
get a new token.

» We then have to update our configuration to use the new token

* One challenge with all of this is that these calls can take an indeterminate
amount of time

* If we discover that the credentials have expired when making a web
service call (which we'll do in subsequent chapters), then we need a way
to specify that our app should go update the token (however long that
takes) and then complete the action that was in progress

- How are we EVER going to chain all of these asynchronous requests
together?

© Kenneth M. Anderson, 2016 25

Promises to the rescuel!

* The book makes use of promise objects returned by the Google APl and
jQuery deferred objects (which act like promises) to solve this problem!

* First, we create a function inside of googleSignin called refresh()

* It handles getting a new token from Google and then updating AWS

function refresh() {
return gapi.auth2..
prompt: 'login’
}).then(function(userUpdate) {
var creds = AWS.config. credentlals

var newloken = userUpdate.getAuthResponse().1d_token;
creds.params. Loglns[accounts goog le. com] = newToken;
return learnjs.awsRefresh();
F);
’

© Kenneth M. Anderson, 2016 26

Refreshing AWS

- To update our AWS credentials, we then use this function

learnjs.awsRefresh = function() {
var deferred = new $. Deferred()
AWS.config.credentials. -esh(function(err) {
if (err) A
deferred.reject(err);
} else A
deferred. e(AWS.config.credentials.identityId);
}
r);
return deferred.promise();
}

* Here, we create a promise and start a long-running function that will resolve
when we get our updated credentials back from Cognito.

© Kenneth M. Anderson, 2016

Making use of the credentials

* The last step is to configure our app to make use of the credentials
« We'll create an identity object that is, itself, a promise
e learnjs.identity = new $.Deferred();

* Then, we update the googleSignln function to resolve this promise and
supply a value that contains everything we need to make use AWS

learnJS ldentlty
1d: 1id,

emalil: googleUser.getBasicProfi
refresh: refresh

© Kenneth M. Anderson, 2016 28

Understanding the Chain

* It is important that you understand the chain of promise objects created to
handle this refresh process

» The Google signin method is called by Google when the connect button is
picked and the user clicks approve

+ googleSignin() calls awsRefresh() and registers a then() callback on it.

- awsRefresh creates a promise object, invokes a long running operation on
it (updating our AWS credentials), and then returns the promise

- when that resolves, the then() handler fires and that resolves our identity
object that will be used soon to list the e-mail address associated with the
connected account

» Workflow: user clicks button => awsRefresh() => then() => learnjs.identity

* token goes invalid => refresh() => awsRefresh() => then() => learnjs.identity

© Kenneth M. Anderson, 2016

29

Seeing the Chain in Action (l)

- We've set up the promise chain to ensure that our identity object has the
connected user's e-mail address stored in a property

- Let's create a view that displays that property when it is available

* First, we need to create a view function to display the e-mail address
learnjs.profileView = function() {

var view = learnjs.template('profile-view');

learnjs.identity.done(function(identity) A

view. find('.email').text(identity.email);
F);

return view:

}

© Kenneth M. Anderson, 2016 30

Seeing the Chain in Action (lI)

* Next, we create the profile-view template
1v class='profile-view'>
<h3>Your Profile</h3>

<div class='email'></
</d1lv>

* and, add a route that maps a url to that view
e '#profile': learnjs.profileView,

- and update our appOnReady() function to register a done handler on the
identity object

e learnjs.identity.done(learnjs.addProfileLink);

© Kenneth M. Anderson, 2016 31

Seeing the Chain in Action (lIl)

* Finally, implement the addProfileLink method
learnjs.addProfileLink = function(profile) <

var link = learnjs.template('profile-1link"');

link.find('a').text(profile.email);

$('.signin-bar').prepend(1link);

}

- and add a new template called profile-link that will be used to add a link next
to the sign-in button which takes you to the profile view.

* The result: the e-mail address of the associated identity is displayed, both in
the navbar and the profile view

* Currently, there is no way to sign out

© Kenneth M. Anderson, 2016 32

Summary

* In this chapter, we have touched on a number of topics
- federated identity services and Cognito
- multiple identity providers
» Workflows for handling identity acquisition

» Use of promises to ensure that profile info is not allowed to populate a
view until we're sure that identity acquisition is over (and did succeed)

* Next Time: Storing Data in Dynamo DB

© Kenneth M. Anderson, 2016

33

