
© Kenneth M. Anderson, 2016

Serverless Single Page Web Apps, Part Three

CSCI 5828: Foundations of Software Engineering

Lecture 23 — 11/08/2016

1

© Kenneth M. Anderson, 2016

Goals

• Cover Chapter 3 of Serverless Single Page Web Apps by Ben Rady

• Creating a well-rounded single page web app

• Views

• Data Model

• Data Binding

• Navigation

• Some bells and whistles: animation

• These items are elements found in all single page web applications

2

© Kenneth M. Anderson, 2016

LearnJS

• Reminder: our example application is called LearnJS

• It's primary view is going to be a "problem view" that presents a
JavaScript puzzle to a user; the puzzle will have a blank "placeholder"

• The user needs to enter text that when placed in the placeholder makes
the JavaScript puzzle return a "truthy" value.

• Example

• function problem() { return 42 === 6 * __; }

• If we enter "7" as our answer, this program will return true

• We need to build up a data model that holds these problems and a view to
display them; we will start by getting our views a bit more organized

3

© Kenneth M. Anderson, 2016

Extracting Views

• We currently have view functions that generate HTML markup using jQuery
and then we attach that markup dynamically to places in the DOM

• For the problem view, we're going to modify this set-up to also make use of a
generic HTML template

• First, we need a place for our templates to live

• "It's div's all the way down"

• We'll add a div to our index.html page that is tagged with the class
"templates" and then we'll add a template for our problem view there

• That template will have "problem-view" div and an H3 heading for the
problem's title

4

© Kenneth M. Anderson, 2016

Updating index.html

5

Here we add the
templates div to
our document; we
then add the
template for our
problem-view
within it

© Kenneth M. Anderson, 2016

Can the Templates be seen? (I)

• For the current template, we are safe.

• It defines some HTML structures but no visible text

• Watch what happens if we put placeholder text in the template

• <h3 class='title'>Put Title Here</h3>

6

Whoops!

© Kenneth M. Anderson, 2016

Can the Templates be seen? (II)

• So, yes, if a template contains user-visible text

• that text can be seen when the page is loaded

• To fix this, we will use CSS to tell the browser not to display anything inside of
the templates div

• In index.html, we add this line to the style tag

• .templates { display: none; }

• This CSS directive selects on all items with a class of "templates" and sets

their display attribute to "none". This applies to the element and all of its
child elements

• With this added, our placeholder text will no longer appear

• Be sure to remove that placeholder text however.

• git add .; git commit -m "Added templates div" <= commit early, commit often

7

© Kenneth M. Anderson, 2016

Template?

• We call the child elements of templates div a "template" because:

• when we need to create a new problem view

• we're going to find this template in the DOM

• CLONE it (using jQuery)

• and then create our target view

• The code that will do this is the view function we created in Lecture 21 called
problemView()

8

© Kenneth M. Anderson, 2016

Changing problemView() (I)

• problemView() currently looks like this

• Here, we are creating a div using jQuery and inserting our title into it

• Now, we need to find our template, copy it, and update the existing title
element; then we can return it and our existing code will display it for us

9

© Kenneth M. Anderson, 2016

Changing problemView() (II)

• The result?

• git add .; git commit -m "problemView uses templates"

• Now, we need to add a data model to our app, so we can add a bunch of
new problems to our app.

10

© Kenneth M. Anderson, 2016

Data Model

• Our data model is going to be a simple data structure

• an array of JavaScript objects

• Each object will have attributes that store the code and description of each
problem that will eventually be displayed in our problem view

• This data structure will be called problems and is defined within our
learnjs namespace and stored in app.js

• The book starts us off with two problems

• I added three more (see next slide)

11

© Kenneth M. Anderson, 2016 12

Note: I screwed up on this text. The last three problems need to define
their variables. They should say "var list", "var p", and "var a".

© Kenneth M. Anderson, 2016

Data Binding (I)

• The code shown for inserting a title on slide 9 works for simple templates

• but it does not scale well

• If our templates and data model become more complex

• we want a way to bind the elements in our data model to elements in our
template

• HTML 5 provides a way to do simple one-way data binding

• via HTML data attributes

• https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/
Using_data_attributes

13

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Using_data_attributes

© Kenneth M. Anderson, 2016

Data Binding (II)

• To take advantage of this standard, we need to add a few things to our
template; in particular, attributes that start with "data-" and (in our case) end
with "name"

• We now have a p tag that has a data-name attribute that contains the value
"description" and a code tag that has a data-name attribute of "code"

• We can use these attributes to populate our template

14

© Kenneth M. Anderson, 2016

Data Binding (III)

• To take advantage of this standard, we need to add a few things to our
template; in particular, attributes that start with "data-" and (in our case) end
with "name"

• We now have a p tag that has a data-name attribute that contains the value
"description" and a code tag that has a data-name attribute of "code"

• We can use these attributes to populate our template

15

© Kenneth M. Anderson, 2016

Data Binding (IV)

• The book uses this function to perform data binding

• The first parameter is an instance of the problem objects from our data model

• The loop will loop twice for each object since it has only two properties

• Each time, we will search for an element in "elem" that has a data-name
attribute matching the key.

• We'll then set that element's text object to the value contained in our
problem object

16

© Kenneth M. Anderson, 2016

Data Binding (V)

• We just need to update our problemView() function to make use of the new
applyObject() function

• We do that by adding this line after the line that sets the title

• learnjs.applyObject(learnjs.problems[number - 1], view);

• (for this to work, we also add a line to the function to parse the string
passed in for the problem number and convert it to an integer

17

© Kenneth M. Anderson, 2016

Data Binding: The Results?

• We can now manually enter the URLs

• http://localhost:9292/#problem-1, …

• http://localhost:9292/#problem-5

• And see each of our problems displayed

18
git add .; git commit -m "Data Binding Added"

http://localhost:9292/#problem-1
http://localhost:9292/#problem-5

© Kenneth M. Anderson, 2016

Ready for Input (I)

• Now, we need to configure our problem view to allow a user to enter a
solution to the problem

• We'll use a form for that; we'll modify our template like this:

• Some of these CSS classes are for our app; the rest come from Skeleton

19

© Kenneth M. Anderson, 2016

Ready for Input (II)

20

The result?

But, right now, the button doesn't do anything

© Kenneth M. Anderson, 2016

Handling the Form (I)

• We will be modifying our problemView() function to add behavior to our
problem view

• We will attach a function to the "submit" button that returns "false" to tell
the browser not to do anything when the form is submitted

• We will handle everything within our JavaScript code

21

© Kenneth M. Anderson, 2016

Handling the Form (II)

• We will start by writing the code that checks the user's solution

• They enter text into the "answer" text area.

• We substitute that text into the problem string and run it through eval()

• There is a potential security risk with eval() that we will ignore for now

• As you can see, we substitute the user's answer for the "__" in the problem
and then we invoke the problem function. This string gets executed by
JavaScript's eval() function; will return true or false

22

© Kenneth M. Anderson, 2016

Handling the Form (III)

• Now, we need code, that handles the form submission

• It's really simple

• If our previous checkAnswer() code returns true, then set the result portion of
the template to "Correct" otherwise "Incorrect".

23

git add .; git commit -m "User Input Handled"

© Kenneth M. Anderson, 2016

Need for Animation (I)

• Our code works

• but…

• if you enter two wrong answers in a row, the browser doesn't seem to
update; that's because it's "changing" the text "Incorrect" to "Incorrect"
and the user doesn't see a visual update

• as a result, it feels like the app is broken

• To fix, this, we're going to change our code to animate the result message

• using jQuery, of course

24

© Kenneth M. Anderson, 2016

Need for Animation (II)

• We'll use this code to do the animation

• This code calls jQuery's fadeOut command and passes in a callback

• When the element has disappeared, the callback is invoked

• It then updates the element with the new content and then makes it
fade back in

25
git add .; git commit -m "Animation Added"

© Kenneth M. Anderson, 2016

Navigating through the Problems

• We now need a way to allow our user to move from problem to problem

• (without having to type the problem urls themselves!)

• We'll do this by updating our template to add a link to the next problem when
the user gets a problem correct

• If the problem is incorrect, we'll keep them on the same page.

• If they solve the last problem, we'll provide a link back to the landing page

• Since the text for a correct solution will change with context

• we will create a template for it and then populate the template as needed
for the current context

26

© Kenneth M. Anderson, 2016

Handling a Correct Solution (I)

• First, we'll add our template to index.html

<div class='correct-flash'>
Correct! <a>Next Problem

</div>

• We'll create a function that makes it easier to retrieve templates

learnjs.template = function(name) {
return $('.templates .' + name).clone();

}

• Now, we're ready to create a function that uses this template to create the
proper link based on which question the user has answered

27

© Kenneth M. Anderson, 2016

Handling a Correct Solution (II)

• Here's the function that uses the template to create our "correct" response

• This function gets called by our handleSubmit() function. We can now
navigate through all the problems in our quiz!

28
git add .; git commit -m "Quiz Navigation Complete"

© Kenneth M. Anderson, 2016

Adding an Application Shell

• I'm going to skip this section of the book

• They add a "shell" to the application which is defined as

• those elements (like navbars) that appear in all views

• To do this requires changes that mostly involve HTML and CSS

• The result is shown on the next slide

29

git add .; git commit -m "Application Shell Added"

© Kenneth M. Anderson, 2016

Our App: Now with NavBar

30

© Kenneth M. Anderson, 2016

Last Change: Custom Events

• Currently, it is easy for our view functions to reach out and access our
application

• the learnjs namespace makes that very straightforward

• But, there is no easy way for our application to trigger behavior inside our
views

• Our views get created by view functions and then attached into the DOM

• our application doesn't have a handle that allows it to access the view
(or its functions) once they have been inserted into the DOM

• The solution is to make use of HTML5's standard event mechanism

• We can have views register for events and then trigger those events at the
application level when needed

31

© Kenneth M. Anderson, 2016

Implementing a Skip Button

• To demonstrate why this type of functionality is useful, we'll have our problem
view implement a "skip" button

• On every problem, except for the last, we'll add a "Skip" button to our
navigation bar

• If the user doesn't want to work on a problem, they can skip it

• The problem here is that we need to make sure that every time we go to a
new view we check to see if a skip button is present

• Rather than have the application do that, we'll let our views handle that

• Before a view goes away, we'll trigger a "removingView" event

• If a view needs to clean up after itself, it will register for this event
and do the cleanup in the corresponding event handler

32

© Kenneth M. Anderson, 2016

Implementing Events (I)

• First, we create a function that lets us trigger an event

• The syntax ".view-container>*" means trigger the event on all children of
the "view-container" element.

• Now, we add a call to this event in showView() to trigger the removingView
event

• We do this right before the call to empty() in showView().

33

© Kenneth M. Anderson, 2016

Implementing Events (II)

• Now, we need a new template, that will help us create a Skip button

• <li class='skip-btn'><a>Skip This Problem

• Finally, we add code to problemView() to create the skip button and register
the appropriate event handlers (using jQuery)

• Note: view.bind() is used to register an event handler for our custom event

34

© Kenneth M. Anderson, 2016

Summary

• In this chapter, we have touched on a number of topics

• extracting markup into HTML templates

• adding a data model to the application

• adding data binding between model and view

• adding navigation

• adding an application shell

• adding custom events and showing how they can be used

• We now have a solid prototype that demonstrates most of the features of a
typical serverless single page web app

• Next Up: Handling user identities with Amazon's Cognito service

35

