Serverless Single Page Web Apps,

Part

CSCI 5828: Foundations of Software Engineering

Lecture 23 — 11/08/2016

© Kenneth M. Anderson, 2016

hree

(Goals

« Cover Chapter 3 of Serverless Single Page Web Apps by Ben Rady
 Creating a well-rounded single page web app
- Views
- Data Model
- Data Binding
- Navigation
» Some bells and whistles: animation

* These items are elements found in all single page web applications

© Kenneth M. Anderson, 2016

LearndS

* Reminder: our example application is called LearndS

- It's primary view is going to be a "problem view" that presents a
JavaScript puzzle to a user; the puzzle will have a blank "placeholder”

» The user needs to enter text that when placed in the placeholder makes
the JavaScript puzzle return a "truthy" value.

- Example
» function problem() { return 42 ===6"*__; }
* If we enter "7" as our answer, this program will return true

- We need to build up a data model that holds these problems and a view to
display them; we will start by getting our views a bit more organized

© Kenneth M. Anderson, 2016

=xtracting Views

» We currently have view functions that generate HTML markup using jQuery
and then we attach that markup dynamically to places in the DOM

* For the problem view, we're going to modify this set-up to also make use of a
generic HTML template

* First, we need a place for our templates to live

- "It's div's all the way down"

- We'll add a div to our index.html page that is tagged with the class
"templates” and then we'll add a template for our problem view there

» That template will have "problem-view" div and an H3 heading for the
problem'’s title

© Kenneth M. Anderson, 2016

Updating index.html

class="'one-half column'>
>Learn JavaScript, one puzzle at
href="#problem-1"' class="button

>
class="'one-half column'>
src="'/images/HeroImage.jpg'/>

<div class='templates'> Here we add the

<div class='problem-view'> .
<h3 class="'title'></h3> templates div to

/Z/' div> our document; we
< 1Vv=> +
< type="text/javascript > hen add the
$(window) .ready(learnjs.appOnReady) ; ':emplate for our
oroblem-view

within it

© Kenneth M. Anderson, 2016

Can the Templates be seen? (l)

 For the current template, we are safe.
* It defines some HTML structures but no visible text
- Watch what happens if we put placeholder text in the template

« <h3 class='title'>Put Title Here</h3>

< C 1) @ localhost:9292
i Apps @ Me.Com [5JustinCase @ Apple @ Amazon §&, Google Drive M Gmail || Netflix ES5 Macintosh “4ICE {# EPIC Ana Iytics [Faculty Search @ CU Diversity Plan /| Scarab of RA ¥ Google Mag

Learn JavaScript, one puzzle
at atime.

START NOW!

Put Title Here - i iioioteoirreo —mm——————— \VhoOps!

© Kenneth M. Anderson, 2016

Can the Templates be seen? (ll)

* S0, yes, if a template contains user-visible text
* that text can be seen when the page is loaded

» To fix this, we will use CSS to tell the browser not to display anything inside of
the templates div

* In index.html, we add this line to the style tag
- .templates { display: none; }

« This CSS directive selects on all items with a class of "templates" and sets
their display attribute to "none". This applies to the element and all of its
child elements

- With this added, our placeholder text will no longer appear

* Be sure to remove that placeholder text however.

e git add .; git commit -m "Added templates div" <= commit early, commit often

© Kenneth M. Anderson, 2016

Template”

« We call the child elements of templates div a "template” because:
- when we need to create a new problem view
- we're going to find this template in the DOM
« CLONE it (using jQuery)
- and then create our target view

« The code that will do this is the view function we created in Lecture 21 called
problemView()

© Kenneth M. Anderson, 2016

Changing problemView() (I)

 problemView() currently looks like this

learnjs.problemView = function(number) {
var title = 'Problem #' + number +

Coming soon!’;
return $('<div class="problem-view">"').text(title);

* Here, we are creating a div using jQuery and inserting our title into it

* Now, we need to find our template, copy it, and update the existing title
element; then we can return it and our existing code will display it for us

learnjs. |i~u\ /iew = function(number) {
var view = 3(templates .problem-view').clone();
view.find('.title'). t('Problem #' + number);

return view:

© Kenneth M. Anderson, 2016

Changing problemView() (Il

* The result?

< C 1) | ® localhost:9292/#problem-1
2 Apps @ Me.Com [5JustinCase @ Apple @ Amazo

Problem #1

e git add .; git commit -m "problemView uses templates"

* Now, we need to add a data model to our app, so we can add a bunch of
new problems to our app.

© Kenneth M. Anderson, 2016

Data Model

» Our data model is going to be a simple data structure
* an array of JavaScript objects

» Each object will have attributes that store the code and description of each
problem that will eventually be displayed in our problem view

 This data structure will be called problems and is defined within our
learnjs namespace and stored in app.js

- The book starts us off with two problems

- | added three more (see next slide)

© Kenneth M. Anderson, 2016

11

-
learnjs.problems = [

{
description: "What 1is truth?",
code: "function problem() { return __; }"
}
{
description: "Simple Math",
code: "function problem() { return 42 === 6 x __; }"
}
{
description: "Start of an Array",
code: "function problem() { list = [42, 23, 10]; return __ === 42; }"
¥
{
description: "Accessing Attributues",
code: 'function problem() { p = {name: "Ken"}; return __ == "Ken"; }'
}
{
description: "Increment Variable",
code: 'function problem() { a = 41; return (++a == __);}'

Note: | screwed up on this text. The last three problems need to define

their variables. They should say "var list”, "var p", and "var a".

© Kenneth M. Anderson, 2016

Data Binding (l)

* The code shown for inserting a title on slide 9 works for simple templates
* but it does not scale well
* If our templates and data model become more complex

- we want a way to bind the elements in our data model to elements in our
template

- HTML 5 provides a way to do simple one-way data binding
 via HTML data attributes

» https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/
Using data attributes

© Kenneth M. Anderson, 2016

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Using_data_attributes

Data Binding (ll)

 To take advantage of this standard, we need to add a few things to our
template; in particular, attributes that start with "data-" and (in our case) end
with "name”

l1v class="templates'>
v class="problem-view'>
3 class="title'></h3>
data—-name="'description’'></p>

re><code data—-name="'code'></code></pre>
< / |

1V>
< /] j_ \/ >

<|

-

-
;

- We now have a p tag that has a data-name attribute that contains the value
"description” and a code tag that has a data-name attribute of "code”
* We can use these attributes to populate our template

© Kenneth M. Anderson, 2016 14

Data Binding (ll1)

 To take advantage of this standard, we need to add a few things to our
template; in particular, attributes that start with "data-" and (in our case) end
with "name”

l1v class="templates'>
v class="problem-view'>
3 class="title'></h3>
data—-name="'description’'></p>

re><code data—-name="'code'></code></pre>
< / |

1V>
< /] j_ \/ >

<|

-

-
;

- We now have a p tag that has a data-name attribute that contains the value
"description” and a code tag that has a data-name attribute of "code”
- We can use these attributes to populate our template

© Kenneth M. Anderson, 2016 15

Data Binding (IV)

* The book uses this function to perform data binding
learnjs.applyObject = function(obj, elem) {

for (var key in obj) {
elem. find(' [data—name="" + key + '"]').text(objlkeyl]);

I3
&

* The first parameter is an instance of the problem objects from our data model

* The loop will loop twice for each object since it has only two properties

- Each time, we will search for an element in "elem" that has a data-name
attribute matching the key.

- We'll then set that element’'s text object to the value contained in our
problem object

© Kenneth M. Anderson, 2016 16

Data Binding (V)

« We just need to update our problemView() function to make use of the new
applyObject () function

- We do that by adding this line after the line that sets the title

e learnjs.applyObject(learnjs.problems[number - 1], view);

- (for this to work, we also add a line to the function to parse the string
passed in for the problem number and convert it to an integer
learnjs.problemView = function(data) {
var number = parselnt(data, 10);
var view = $('.templates .problem-view').clonel();
view.find('.title').text('Problem #'

+ number) :

learnjs.applyObject(learnjs.problems [number -1], view);
return view;

© Kenneth M. Anderson, 2016 17

Data Binding: The Results”

- We can now manually enter the URLs

» http://localhost:9292/#problem-1, ...

» http://localhost:9292/#problem-5

* And see each of our problems displayed

@ localhost:9292/#problem-5
Com [E3JustinCase @ Apple @ Amazon §&, Google Drive M Gmail | Netflix F5 Macintosh “4ICE i Ef

Problem #5

Increment Variable

function problem() { a = 41; return (++a == __);}

git add .; git commit -m "Data Binding Added"
© Kenneth M. Anderson, 2016

18

http://localhost:9292/#problem-1
http://localhost:9292/#problem-5

Ready for Input (I)

* Now, we need to configure our problem view to allow a user to enter a
solution to the problem

* We'll use a form for that; we'll modify our template like this:
div class='problem-view'>
<h3 class="title'></h3>
<p data—-name='description’'></p>
<pre><code data—-name="'code'></code></pre>
<form>
<textarea class='u-full-width answer'></textarea
<alV
<pbutton class="button-primary check-btn'>Check Answer</button
<p class='result'></p>
</a1iv>

</ l orm=

</d1v>
- Some of these CSS classes are for our app; the rest come from Skeleton

© Kenneth M. Anderson, 2016 19

Ready for Input (lI)

The result?

® localhost:9292/#problem-5 Qv ©
Com [5JustinCase @ Apple @ Amazon §, Google Drive M Gmail | Netflix [F5 Macintosh “4ICE i EPIC Analytics E§ Faculty Search @ CU Diversity Plan

Problem #5

Increment Variable

function problem() { a = 41; return (++a == __);}

But, right now, the button doesn't do anything

© Kenneth M. Anderson, 2016 20

Handling the Form (I)

» We will be modifying our problemView() function to add behavior to our
problem view

« We will attach a function to the "submit" button that returns "false" to tell
the browser not to do anything when the form is submitted

» We will handle everything within our JavaScript code

© Kenneth M. Anderson, 2016

21

Handling the Form (Il)

- We will start by writing the code that checks the user's solution
* They enter text into the "answer” text area.
» We substitute that text into the problem string and run it through eval()

* There is a potential security risk with eval() that we will ignore for now

function checkAnswer() {
var answer = view.find('.answer').vall();
var test = problem.code.replace("

answer) + '; problem();"';

— !

h

* As you can see, we substitute the user's answer for the "__" in the problem
and then we invoke the problem function. This string gets executed by
JavaScript's eval () function; will return true or false

© Kenneth M. Anderson, 2016 22

Handling the Form (lll)

 Now, we need code, that handles the form submission

* It's really simple

function handleSubmit (
if (checkAnswer()) {
result.text('Correct!"'):
} else {

result.text('Incorrect!'):

¥

h

* If our previous checkAnswer() code returns true, then set the result portion of
the template to "Correct" otherwise "Incorrect”.

git add .; git commit -m "User Input Handled"

© Kenneth M. Anderson, 2016

23

Need for Animation (l)

« Qur code works
* but...

- if you enter two wrong answers in a row, the browser doesn't seem to
update; that's because it's "changing" the text "Incorrect” to "Incorrect”
and the user doesn't see a visual update

* as a result, it feels like the app is broken
* To fix, this, we're going to change our code to animate the result message

* using jQuery, of course

© Kenneth M. Anderson, 2016 24

Need for Animation (lI)

 We'll use this code to do the animation

learnjs.flashElement = function(elem, content) <
elem. fadeOut('fast', function() {
elem.html(content);

elem. fadeln():
r);
F

* This code calls jQuery's fadeOut command and passes in a callback
* When the element has disappeared, the callback is invoked

* It then updates the element with the new content and then makes it
fade back in

git add .; git commit -m "Animation Added"
© Kenneth M. Anderson, 2016

25

Navigating through the Problems

« We now need a way to allow our user to move from problem to problem
* (without having to type the problem urls themselves!)

- We'll do this by updating our template to add a link to the next problem when
the user gets a problem correct

- If the problem is incorrect, we'll keep them on the same page.
* If they solve the last problem, we'll provide a link back to the landing page
» Since the text for a correct solution will change with context

« we Wwill create a template for it and then populate the template as needed
for the current context

© Kenneth M. Anderson, 2016

26

Handling a Correct Solution (l)

 First, we'll add our template to index.html

<div class='correct-flash'>
Correct! <a>Next Problem
</div>

« We'll create a function that makes it easier to retrieve templates

learnjs.template = function(name) {
return S('.templates .' + name).clone();

}

* Now, we're ready to create a function that uses this template to create the
proper link based on which question the user has answered

© Kenneth M. Anderson, 2016

27

Handling a Correct Solution (ll)

* Here's the function that uses the template to create our "correct” response

learnjs.buildCorrectFlash = function(number) <

var correctFlash = learnjs template('correct-flash');

var link = correctFlash.find('a"');

if (number < learnjs.problems.length) {
link.attr('href', '#problem-' + (number + 1));

y else {
liﬂk.ﬂiiﬁ('hFEf')
link.text("You're Finished!");

I3

return correctFlash;

* This function gets called by our handleSubmit() function. We can now

navigate through all the problems in our quiz!

git add .; git commit -m "Quiz Navigation Complete"
© Kenneth M. Anderson, 2016

Adding an Application Shell

* I'm going to skip this section of the book
* They add a "shell" to the application which is defined as
 those elements (like navbars) that appear in all views
 To do this requires changes that mostly involve HTML and CSS

* The result is shown on the next slide

git add .; git commit -m "Application Shell Added"

© Kenneth M. Anderson, 2016

29

Our App: Now with NavBar

Learn JavaScript, one
puzzle at a time.

START NOW!

. C 1) | © localhost:9292/2# Q1 ®
i Apps @ Me.Com [JustinCase @ Apple @ Amazon ¢, Google Drive M Gmail) Netflix E5 Macintosh “9ICE {& EPIC Analytics [E§ Faculty Search » B
LearnJS Start

© Kenneth M. Anderson, 2016

30

Last Change: Custom Events

« Currently, it is easy for our view functions to reach out and access our
application

* the learnjs namespace makes that very straightforward

* But, there is no easy way for our application to trigger behavior inside our
views

» Our views get created by view functions and then attached into the DOM

* our application doesn't have a handle that allows it to access the view
(or its functions) once they have been inserted into the DOM

* The solution is to make use of HTML5's standard event mechanism

* We can have views register for events and then trigger those events at the
application level when needed

© Kenneth M. Anderson, 2016 31

Implementing a Skip Button

* To demonstrate why this type of functionality is useful, we'll have our problem
view implement a "skip" button

* On every problem, except for the last, we'll add a "Skip" button to our
navigation bar

* If the user doesn't want to work on a problem, they can skip it

* The problem here is that we need to make sure that every time we go to a
new view we check to see if a skip button is present

* Rather than have the application do that, we'll let our views handle that
- Before a view goes away, we'll trigger a "removingView" event

* If a view needs to clean up after itself, it will register for this event
and do the cleanup in the corresponding event handler

© Kenneth M. Anderson, 2016

32

Implementing Events (l)

* First, we create a function that lets us trigger an event
learnjs.triggerEvent = function(name, args) 1

$('.view—container>x*').trigger(name, args);

¥

* The syntax ".view-container>
the "view-container" element.

* 11

means trigger the event on all children of

« Now, we add a call to this event in showView () to trigger the removingView
event

- We do this right before the call to empty () in showView().

if (viewFn) A
learnjs.triggerEvent('removingView', []);

%('_View_container')_ijLy[},gppCHd(ULCHFV(partS[l]));

h

© Kenneth M. Anderson, 2016 33

Implementing Events (ll)

* Now, we need a new template, that will help us create a Skip button

e <1li class="'skip-btn'><a>Skip This Problem</1i>

* Finally, we add code to problemView() to create the skip button and register
the appropriate event handlers (using jQuery)

if (number < learnjs.problems. length) <
var buttonItem = learnjs.template('skip-btn');
buttonItem.find('a').attr('href', '#problem-' + (number + 1));
$('.nav-list').append(buttonItem);

view.bind('removingView', function() {
buttonItem. removel();
r);

- Note: view.bind() is used to register an event handler for our custom event

© Kenneth M. Anderson, 2016 34

Summary

* In this chapter, we have touched on a number of topics
 extracting markup into HTML templates
- adding a data model to the application
- adding data binding between model and view
- adding navigation
- adding an application shell
- adding custom events and showing how they can be used

* We now have a solid prototype that demonstrates most of the features of a
typical serverless single page web app

* Next Up: Handling user identities with Amazon's Cognito service

© Kenneth M. Anderson, 2016

35

