
© Kenneth M. Anderson, 2016

Serverless Single Page Web Apps, Part One

CSCI 5828: Foundations of Software Engineering

Lecture 20 — 10/27/2016

1

© Kenneth M. Anderson, 2016

Goals

• Introduce our second textbook:

• Serverless Single Page Web Apps by Ben Rady

• Discuss what you need to do to use the example code in the book

2

© Kenneth M. Anderson, 2016

Example Code (I)

• This book makes use of a "prepared environment"

• A GitHub repo that contains software to help automate interactions with
Amazon Web Services; to allow us to focus on learning the content

• The GitHub Repo is located here:

• https://github.com/benrady/learnjs.git

• Do NOT clone this repository directly

• Instead, the book asks you to fork it

• Let's work our way through that process…

3

https://github.com/benrady/learnjs.git

© Kenneth M. Anderson, 2016

Example Code (II)

• To fork a repository, visit it in your web browser:

• https://github.com/benrady/learnjs.git

• Click on the Fork button in the upper right (and follow any instructions)

• This will create a copy of the repository in your user account

• Now, clone your own copy of the forked repository to your computer

• So, for me, I would go to my laptop, and do something like

$ cd Projects

$ git clone git@github.com:kenbod/learnjs.git

• You should execute similar commands on your machine but use the URL from
your own account NOT my account

4

https://github.com/benrady/learnjs.git

© Kenneth M. Anderson, 2016

Example Code (III)

• Now, you need to configure your repository such that you can get updates
from the original repository (if and when they appear)

• To do that, on your local machine, go to the learnjs directory and type

• $ git remote add upstream https://github.com/benrady/learnjs.git

• Then verify that the remote has been set-up correctly:

• $ git remote -v

• You should see something like:

• origin git@github.com:kenbod/learnjs.git (fetch)
• origin git@github.com:kenbod/learnjs.git (push)
• upstream https://github.com/benrady/learnjs.git (fetch)
• upstream https://github.com/benrady/learnjs.git (push)

• Your origin URL will point to your own forked copy of the repo, however

5

https://github.com/benrady/learnjs.git

© Kenneth M. Anderson, 2016

Example Code (IV)

• We will be making changes to our local copy of the repository as we work
through the chapters of this book

• What should we do if the author publishes new commits to the original
repository?

• The basic approach is the following

• $ git stash

• $ git fetch upstream

• $ git checkout master

• $ git merge upstream/master

• $ git push

• $ git stash apply

• What does this do?

• (See next slide)

6

© Kenneth M. Anderson, 2016

Example Code (V)

• Here's what the commands on the previous slide accomplish

1. git stash: Save your changes and set them aside; your repository goes
back to the state stored in the HEAD of the current branch

2. git fetch upstream: Fetch the changes from the original repository; the
changes are downloaded but NOT applied

3. git checkout master: Make sure you're on the master branch

4. git merge upstream/master: Merge the changes from the original

repository to your local master branch; if you committed any changes to
your local repository that conflict, you'll need to resolve the conflicts

5. git push: Assuming no conflicts, this command pushes the changes
from the original repository to your forked repository on GitHub

6. git stash apply: Retrieve your changes saved in step 1 and apply them
to the newly updated repository

7

© Kenneth M. Anderson, 2016

Example Code (VI)

8

original repoforked repoGitHub

Your Machine local repo

origin upstream

implicit link

© Kenneth M. Anderson, 2016

Example Code (VII)

• Contents of the example code

• A shell script called sspa (used to automate various tasks)

• A public folder that contains our initial website

• Various support and configuration folders

• Dependencies

• To run the shell script, you need to have python 2.7

• You will also need to have the Amazon Web Services CLI

• To do that, make use of Python's package manager, pip

• pip install awscli or sudo pip install awscli

• If you don't have pip, try: (sudo) easy_install pip

9

© Kenneth M. Anderson, 2016

Serverless Web Applications

• Our goal is to look at a class of web applications known as "serverless" apps

• These apps stand in contrast to most traditional web application
frameworks: Ruby on Rails, Django, etc.

• These frameworks help you develop web applications that live on the
server and generate HTML/CSS/Javascript that executes on a client
machine in response to HTTP GET/PUT/POST/DELETE requests

• With serverless apps, your first request to a server, downloads a set of HTML/
CSS/Javascript that then handles all aspects of the web app within the
browser on the client machine

• The server is used initially to get those files and then may be used to
respond to requests made on web services hosted on the server

• Or not… we might use web services hosted on OTHER servers

10

© Kenneth M. Anderson, 2016

How is this possible?

• Web applications used to be located on the server side (and the vast majority
still are) to handle things like

• user credentials, storage of data, ability to make calls on 3rd party services

• But now, you can avoid the traditional n-tier architecture of web apps

• client browser => load balancer => web server => app server => database

• and instead

• use the web server as a delivery mechanism

• all application logic lives in the browser

• 3rd party web services handle everything else: user accounts, data, etc.

• All due primarily to the evolution of web standards: HTML5, ES6, CSS 3

11

© Kenneth M. Anderson, 2016

Benefits of Serverless Design (I)

• Avoid having to understand a complex web application framework

• No more servers! :-)

• You no longer have to worry about maintaining physical servers; you will
instead host your app's files on a 3rd party service that simply delivers the
app to the browser; someone else performs security updates, maintains
file systems, etc.

• Easy to Scale

• You can rely on cloud service providers to scale your application; our
textbook looks at how AWS can help us scale up to large amounts of data
and users if we need to

12

© Kenneth M. Anderson, 2016

Benefits of Serverless Design (II)

• Highly Available

• You don't have to bring your system down to upgrade it

• You simply deploy a set of static files to the hosting service

• Your users will see the update on the next full refresh on the client

• Low Cost

• For small applications, your computational demands will typically stay in
the range of a service's "free tier"; if you're at that level and your trial
period expires, your costs are often "pennies per day"

• When your needs go up, this approach still scales nicely; the book
claims that its example app could scale to 1M users and still costs only
"dollars per day"

13

© Kenneth M. Anderson, 2016

Benefits of Serverless Design (III)

• Microservice Friendly

• By running all your code in the browser, you can easily integrate new
microservices or web services into your app

• These services will follow OAuth workflows to "login" as a particular
user and then be able to make calls on behalf of that user

• You're not in the business of storing any of that data; the data is
stored on the web service's computers

• Your app might store some client-specific data but in the form of
cookies on a client's machine or in a 3rd party service

• So, once again, you avoid the headaches that come with server side
frameworks: how do I store client data in a safe and secure manner?

14

© Kenneth M. Anderson, 2016

Benefits of Serverless Design (IV)

• Less Code

• There is often a duplication of code that exists when using traditional web
application frameworks

• There's the HTML/CSS/Javascript in the client; it has logic about how
to interoperate with the code on the server

• There's framework code on the server that has to respond to those
interactions

• Change one, you need to change the other

• With serverless apps, all of this logic resides in one place: the client

15

© Kenneth M. Anderson, 2016

Limitations

• It's not all rainbows and butterflies
• adopting serverless web apps brings limitations and new techniques that

are likely unfamiliar

• Vendor Lock-In

• Our textbook makes use of AWS services; migrating to Google Compute
Engine would not be trivial

• Logging
• With traditional frameworks, all of your logging is done in one place; with

serverless apps, your logs might be distributed across multiple services

• Security and Identity Models

• Validating data becomes tricky with serverless apps; Identity/Logins
makes use of 3rd party services that are initially unfamiliar

• Big Money: Usage spikes could impose BIG charges; you have to plan ahead

16

© Kenneth M. Anderson, 2016

The Example App

• Our textbook is going to spend its time developing an application called
LearnJS

• It will be a quiz application that provides simple JavaScript questions to
users who can submit answers and then see the results

17

© Kenneth M. Anderson, 2016

Three Main Files

• Our app consists of three main files

• index.html — content

• app.js — logic

• app_spec.js — tests

• In index.html, we can review the libraries that we depend on

• Normalize, Skeleton, jQuery

• vendor.js references JavaScript libraries that we need for AWS

• To run this on our local machine, head to the learnjs directory and type

• $./sspa server

• Then visit http://localhost:9292

18

DEMO

http://localhost:9292

© Kenneth M. Anderson, 2016

First Change

• Let's replace the boilerplate in index.html with the start of a landing page

• We will learn about HTML, JavaScript, and CSS via osmosis

19

learnjs/1100/public/index.html

<body>
<div class='container'>

<div class='row'>
<div class='one-half column'>

<h3>Learn JavaScript, one puzzle at a time.</h3>
Start Now!

</div>
<div class='one-half column'>

</div>

</div>
</div>

</body>

In your browser, you should now see our landing page in place of the text
that was there before. Clicking the button won’t actually do anything, but
that’s OK.

Now that we’ve added a landing page, we have something to deploy. It’s not
much, but it’s enough to go through the deploy process and iron out any
wrinkles before we start adding more functionality to our app.

Deploying to Amazon S3
When starting a new project, you are often faced with many unknown risks.
Problems that you’re not even aware of can be sitting out there, waiting to
suck away hours of your time. Being able to identify and avoid those risks
can save you frustration, headache, and pain.

Chapter 1. Starting Simple • 14

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

Let's Deploy

• Just like your semester projects, the first issue the book wants to tackle is
deployment!

• Since we don't need a server—just a place to deploy static files—we can
get away with Amazon's S3 file service (Simple Storage Service)

• To make use of that, we need to create an account on Amazon.

• What I did was I created a new e-mail account on Google

• I then used that account to sign up for AWS at

• https://console.aws.amazon.com

• Page 16 and 17 of the textbook step you through the process of then creating
a user via the Identity & Access Management service

• We use that "user" to generate the tokens we need to access AWS and to
assign that user the rights to make use of those services

20

https://console.aws.amazon.com

© Kenneth M. Anderson, 2016

What will this cost?

• For the start of this project, we won't be taxing AWS in any way. We will stay
within their "free tier" for quite a while.

• If/when our free tier expires, the size of the files that we're putting on S3 will
only cost a few pennies per month

• Nothing that will break the bank

21

https://aws.amazon.com/free/

© Kenneth M. Anderson, 2016

Create a "bucket"

• Amazon S3 has the notion of a "bucket"

• You create a bucket and then store things inside of it

• Those items get referenced by things that look like file system paths

• Those paths can then be combined with an "http" prefix and suddenly you

have a URL that provides you with access to the data you put into the
bucket

• To create the bucket, we use the sspa script:

• $./sspa create_bucket <bucket name>

• I used:

• $./sspa create_bucket csci5828-f16-kena

• You'll get back a URL like this:

• http://<bucket_name>.s3-website-us-east-1.amazonaws.com
• http://csci5828-f16-kena.s3-website-us-east-1.amazonaws.com/

22

© Kenneth M. Anderson, 2016

Finally: Deploy the website

• We deploy our website to S3 using the sspa script

• $./sspa deploy_bucket <bucket_name>

• Or, in my case,

• $./sspa deploy_bucket csci5828-f16-kena

• You can then visit the URL on the previous slide to see your deployed website

• This initial work sets us up to explore the mechanics of single-page web apps
next week!

23

© Kenneth M. Anderson, 2016

Summary

• Introduced the notion of serverless single page web applications

• Discussed benefits and limitations

• Retrieved the "prepared workspace" and configured it

• Took our first steps in developing and deploying our application

• Next week:

• Chapter 2: Routing Views with Hash Events

24

