
© Kenneth M. Anderson, 2016

Asynchronous Programming in Javascript, Part 2

CSCI 5828: Foundations of Software Engineering

Lecture 19 — 10/25/2016

1

© Kenneth M. Anderson, 2016

Goals

• Discussed asynchronous programming in Javascript in Lecture 18

• The gap between “now” and “later”

• The event loop

• Traditional Approach: Callbacks and Callback “hell”

• This lecture => Discuss New Approach: Promises

2

© Kenneth M. Anderson, 2016

Callback “Hell”

• A reminder

• We finished last lecture by discussing the traditional approach to async

programming in Javascript

• Callbacks

• and the associated problems with them (callback hell)

• The Pyramid of Doom

• Unclear evaluation (now and later)

• Hardcoded Paths (and unclear error handling)

• Issues of Trust

• callback too soon? too late? never? in the correct way?

• How can we solve callback hell?

3

© Kenneth M. Anderson, 2016

How do we address callback hell?

• With a higher-level abstraction called promises

• promises were added to JavaScript as part of work on “ES6”

• which stands for ECMAScript 6

• which became the official version of JavaScript in June 2015

• ECMAScript 6 brings lots of changes to the language

• I’ve been using “old school” JavaScript (i.e. ES5) in all of my examples
so far; the only ES6 code that I use coming up is promise-related to
keep things focused

• except that I may use ES6 string interpolation here and there

• var n = 42; var s = `The meaning of life is ${n}.`

4

© Kenneth M. Anderson, 2016

Promises (I)

• Promises are

• an abstraction useful in async programming

• an associated API that allows us to use this abstraction in our programs

• A promise represents a future value of some sort

• When a promise is created, it is pending

• At some point in the future, the promise is either fulfilled or rejected

• fulfilled means the promise’s computation succeeded

• rejected means the promise’s computation failed

• Once a promise has either been fulfilled or rejected, it is considered settled

5

© Kenneth M. Anderson, 2016

Promises (II)

• The promises API has many methods

• but the most basic interaction will look something like

var p = new Promise(
function(resolve, reject) {
// long running computation
if (success) {
resolve(…);

} else {
reject(…);

}
}

);
var fulfilled = function(…) {…}; var rejected = function(…) {…};
p.then(fulfilled, rejected);

6

A promise wraps code that will
run asynchronously

At some point that code is
done; if it succeeds, it will
notify the world using the
resolve callback; if it fails, it
will call the reject callback

We can register interest in the promise by
calling its then() method and providing
callbacks for the success/failure cases

© Kenneth M. Anderson, 2016

Promises (III)

• Since promises help us deal with asynchronous code, we still have the issue
of now and later to contend with

• Let's make sure we understand when promise-related code is executed

• First, consider this code

• var p = new Promise(function(resolve, reject) { resolve("now"); });

• The code inside of the anonymous function is executed NOW

• that is synchronously

• The code inside of the function will have run to completion by the time the
call to "new Promise" returns and stores a value in p
• That code may still take a long time to run; all you need to do is call

setTimeout() or some other async function; in this case, the code inside
the anonymous function completes NOW but the promise will be resolved
LATER

7

© Kenneth M. Anderson, 2016

Promises (IV)

• Second, consider this code

• p.then(function(value) { console.log(value); });

• The callback that is passed to then() is executed LATER

• Once the promise has settled (fulfilled or rejected), all registered callbacks

are scheduled in the same way that we saw for process.nextTick()
• That is, when the promise gets resolved or rejected, the callbacks that

were registered by calling then() get added to the front of the event queue

• that means that they are always executed asynchronously never

synchronously

• Let's see this in action

8

© Kenneth M. Anderson, 2016

Promises (V)

• Two functions: testNow/testLater

• Both are designed to show when
promise-related code is
executed

• In testNow, we resolve the
promise right away; in testLater
we have a call to setTimeout()
that delays when the promise
gets resolved

• In both cases, we call then() on
the returned promise to show
when those callbacks run

9
[scheduled.js]

© Kenneth M. Anderson, 2016

Promises (VI)

• The results?

• testNow : 1: 1449707213272
• testNow : ?: 1449707213273
• testNow : 2: 1449707213274
• testLater: 1: 1449707213275
• testLater: 2: 1449707213275

• testNow : then: 1449707213274

• testLater: ?: 1449707213276
• testLater: then: 1449707213276

10[scheduled.js]

code in "new Promise" is synchronous

End of main program
then() handler put on the
front of event queue
setTimeout() placed its
handler at the end of the
event queueOnce the second promise was fulfilled, the second

then() handler placed at front of event queue

© Kenneth M. Anderson, 2016

Promises (VII)

• We've seen some differences but, at this point, you may be wondering if
promises are any different from callbacks?

• We shall explore the differences next, but, at a high level,

• promises are objects that represent the result of an async computation

• once a promise is settled, it stays settled, and remembers its result

• you can call a promise’s then() method more than once and it will

ensure that the appropriate callback is always invoked

• promises can be chained, allowing the clean specification of

asynchronous workflows

11

© Kenneth M. Anderson, 2016

Simple Example

• A simple example of using promises to wrap a call to fs.stats() in Node.js

12
[get_size.js]

Note: it doesn't matter how
long it takes fs.stat() to do its
job

Once it is done, the fulfilled()
or rejected() callback is
guaranteed to be called

not too early
not too late
not multiple times
just once, guaranteed!

What if fs.stat() never finishes?
We'll talk about that later.

© Kenneth M. Anderson, 2016

Promise.resolve(): Intro

• Before promises were added to ES6, there were many different promise
implementations available

• each with slightly different APIs and/or semantics

• The ES6 designers were clever; they wanted to come up with a way to
convert ANY value to an ES6 Promise, including “promises” from these other
libraries

• after all, a Promise is simply a placeholder for a “future value” (be it a
successful result or an error condition)

• The way they did this was to specify a special function called
Promise.resolve()

• Let’s see what it can do

13

© Kenneth M. Anderson, 2016

Promise.resolve(): Examples (I)

• var fulfilled = function(value) { console.log(`Success: ${value}`); }
• var rejected = function(err) { console.log(`Error: ${err}`); }
• var p = Promise.resolve(42);
• p.then(fulfilled, rejected); // Prints: “Success: 42”

• If you pass in a value to Promise.resolve, it creates a promise that has been
fulfilled with that value. As you can see, when we call then() on p, it passes 42
as the value of the promise, just as if we had done the following:

• var p = new Promise(function(resolve, reject) { resolve(42) });

• Promise.resolve() will do this for any value, including collections and null

• Side note: Promise.reject() does the opposite, taking a value and creating a
rejected promise with that value

• var p = Promise.reject(42);
• p.then(fulfilled, rejected); // Prints: “Error: 42”

14
[resolve1.js]

© Kenneth M. Anderson, 2016

Promise.resolve(): Examples (II)

• var fulfilled = function(value) { console.log(`Success: ${value}`); }
• var rejected = function(err) { console.log(`Error: ${err}`); }
• var p1 = Promise.resolve(42);
• var p2 = Promise.resolve(p1);
• console.log(`p1 and p2 are the same object: ${p1 === p2}`);

• In the code above, we show what happens when we pass a promise to
Promise.resolve().

• We start by creating p1 and then we pass p1 into Promise.resolve() to
create p2.

• We then use the === operator to determine if p1 and p2 are identical
(the same object) and it returns true

• We can show that === tests identity by trying the line below

• {name: "ken"} === {name: "ken"} // evaluates to false

15
[resolve2.js]

© Kenneth M. Anderson, 2016

Promise.resolve(): Examples (III)

• var fulfilled = function(value) { console.log(`Success: ${value}`); }
• var rejected = function(err) { console.log(`Error: ${err}`); }
• var successObj = { then: function(cb) { cb(42); }};
• var failObj = { then: function(cb,err) { err("ouch"); }};
• var p1 = Promise.resolve(successObj);
• var p2 = Promise.resolve(failObj);
• p1.then(fulfilled, rejected); // Prints: Success: 42
• p2.then(fulfilled, rejected); // Prints: Error: ouch

• This code shows what happens if you pass in an object to Promise.resolve()
that has a then() method on it; the ES6 designers decided that the way to
identify other types of "promise" objects was to see if they have a then()
method and call it! They call this a "thenable object".

• Duck typing: if it looks like a promise, and acts like a promise, it must be a promise!

• If the object's then() method calls the first function passed to it, the new
promise is fulfilled; if it calls the second function passed to it, rejected.

• In this way, other types of promises can be converted to ES6 promises

16
[resolve3.js]

© Kenneth M. Anderson, 2016

Promises: Passing Values

• As mentioned above, promises represent a "future value"

• You can pass one and only one value to then() callbacks

• var p = Promise.resolve(42);
• p.then(function(value) { // value == 42 });

• As you can see, a callback function in then() receives one value

• what I called fulfilled and rejected in the slides above

• There's no way to pass multiple parameters to these functions

• you either get a value or an error condition

• If you need to pass multiple values, you need to wrap them in an object or
an array; e.g. [23, 42]

17
[passing1.js]

© Kenneth M. Anderson, 2016

Promises: Flow Control

• However, you don't have to use the value that is passed

• You also don't have to pass a value; if you don't, null is passed instead

• In this case, you're just using a promise as a way to do asynchronous
workflows, where one step in the process needs to know when a previous
step is finished

var step1 = new Promise(
 function(resolve, reject) {
 setTimeout(function() {
 resolve(); // call resolve without passing a value
 }, 5000);
 }
);
step1.then(function() { console.log("Step 1 is done!"); });

• Here, it takes 5 seconds before our function calls resolve(). Only then, does
our callback get notified

18
[passing2.js]

© Kenneth M. Anderson, 2016

Promises can be chained

• How can we use promises to specify an asynchronous workflow?

• We need some way to be able to specify the steps of that workflow

• In our examples so far, we've only seen single step workflows; create a
promise and call then() on it

• But, promises can be chained together; now things get interesting!

• To make this work, you need to know two things

• when you call then(fulfilled, rejected), it returns a new promise!

• We've been ignoring that promise so far… no longer!

• that new promise can either be fulfilled or rejected

• it is rejected if the original promise was rejected

• it is fulfilled if we return a value from the fulfilled() callback!

19

© Kenneth M. Anderson, 2016

Creating the Chain (I)

• Start with a simple promise

• var step1 = Promise.resolve(21);

• Create a function that performs the action of step2

• var double = function(v) { return v * 2; };

• Create step2 by calling then() on step1

• var step2 = step1.then(double, rejected);

• step2 is a promise, because

• then() returns a newly created promise (as we said on the previous slide)

• it's value is the value returned by the "fulfillment callback", double()

• We can now call then() on step2!

• step2.then(fulfilled, rejected) // prints "Success: 42"

20
[chain1.js]

© Kenneth M. Anderson, 2016

Creating the Chain (II)

• It's hard to "see the chain" on the previous slide, let's make it more clear

• Promise.resolve(21).then(double, rejected).then(fulfilled, rejected)

• There it is!

• We don't have to store each promise returned by then(), we can just
immediately call then() on them

• It doesn't matter how long each step takes

• If one of the promises has a function that takes a long time to
compute, then the workflow pauses until it's ready

• it then calls resolve or returns a value, which fulfills the promise,
which triggers a call on the next registered callback

21
[chain1.js]

© Kenneth M. Anderson, 2016

Creating the Chain (III)

• Chains can be as long as we want
and each step can take as long as it
needs

• Here the delay() function returns
a promise that uses setTimeout() to
delay for a specified period of time

• In each step (except step 3), it
uses delay() to return a promise
that will eventually trigger the next
call to then()

• When you return a promise from
then()'s fulfillment callback, that
promise is used as then()'s
return value

22
[chain2.js]

© Kenneth M. Anderson, 2016

Error Handling (I)

• Javascript has a try/catch block for handling exceptions

try {
throw Error("Whoops!");

} catch (err) {
console.log(`${err}`);

}

• But, it only works for synchronous code, not asynchronous

• try {

• setTimeout(function() {throw Error("Whoops!"); }, 0);
• } catch (err) {

• console.log(`${err}`);
• }
• console.log("Where is my error?");

23
[error1.js and error2.js]

© Kenneth M. Anderson, 2016

Error Handling (II)

• Handling errors with callbacks is possible but fraught with peril

• It is hard to compose error handling across a chain of callbacks

• And, you typically, have to put in a lot of if statements to handle the
conditional logic, leading you back to callback hell

• Nevertheless, you will see conventions such as Node.js's error first approach

• fs.stat("file.txt", function (err, result) { … });

• As mentioned in the last lecture, the variable "err" will be set to null if the call
to fs.stat was successful. If it is not null, then it is likely an instance of an
exception and you need to handle it. As we saw last time,

• if (err) throw err;

• is a common way to (not) handle errors passed in this way

24

© Kenneth M. Anderson, 2016

Error Handling (III)

• Promises provide a clean way to handle asynchronous errors

• We've already seen the mechanism, we just haven't seen an example of it

• If you encounter an error while trying to resolve a promise, you handle the
error by catching it and passing it to reject().

• This set's the state of the promise to rejected, which then becomes its
immutable state for the rest of the program

• If you call then() on a rejected promise, your rejected callback will be
invoked

• You can also call catch() on a promise; it takes just one callback
which acts like then()'s rejected callback; just like then(), catch()
returns a promise that can also be chained.

25

© Kenneth M. Anderson, 2016

Error Handling (IV)

• These two simple examples demonstrate what happens when you register a
callback on a rejected promise

• Promise.reject("whoops").then(null, function(err) { console.log(err); });

• Promise.reject("whoops").catch(function(err) { console.log(err); });

• Here, we called Promise.reject() directly to create a rejected promise
but promises take care of other error cases; consider:

• var p = new Promise(function(resolve, reject) { foo.bar(); });

• We never called resolve() or reject(), what's the state of the promise?

• The code inside the function references an object (foo) that doesn't exist;

Javascript throws a ReferenceError and the promise is going to "catch"
that error and become rejected automatically

• this also happens when an error occurs in a then() callback

26
[error3.js]

© Kenneth M. Anderson, 2016

Error Handling (V)

• Here's an example of an error occurring in a then() callback

• The promise that then() returns is automatically rejected and can then be
catch()-ed.

• var lower = function(v) { return v.toLowerCase(); };
• var rejected = function(err) { console.log(err); };
• Promise.resolve(42).then(lower).catch(rejected);

• This set's up an important point

• The error occurred in lower(), producing a promise, and then we could
catch() it. If you don't retrieve the promise produced by then() and call
catch() on it (or then()), you won't see the error!

• See example next slide

27
[error4.js]

© Kenneth M. Anderson, 2016

Error Handling (VI)

var fulfilled = function(value) { console.log(`Success: ${value}`); }
var rejected = function(err) { console.log(`Error: ${err}`); }

var trouble = function(v) {
 foo.bar();
 console.log("The meaning of life: " + v);
}

Promise.resolve(42).then(trouble, rejected)

console.log("Where did the error go?")

Promise.resolve(42).then(trouble, rejected).then(fulfilled, rejected);

console.log("Oh, there it is!")

28
[error5.js]

Error gets lost

Error generated and caught
in the next step of the chain

© Kenneth M. Anderson, 2016

Note: NodeJS has your back

• When I ran "node error5.js" this year, it's output was:

• Resolution:promises $ node error5.js
• Where did the error go?
• Oh, there it is!
• Error: ReferenceError: foo is not defined
• (node:41999) UnhandledPromiseRejectionWarning:
Unhandled promise rejection (rejection id: 1):
ReferenceError: foo is not defined

• That last line is node giving you a warning that the un-handled error that was
generated on line 9 of error5.js occurred. This would give you a clue that you
needed another step in the chain to check for errors. Nice!

29

© Kenneth M. Anderson, 2016

Error Handling (VII)

• What's nice about the Promise approach to handling errors is that it is
possible to perform error recovery

• If you return a value from an error handler, then that resolves the new
promise being created by either then() or catch() and that resolved promise
can then be chained.

• Let's look at an example: error_in_chains.js

30

© Kenneth M. Anderson, 2016

What's left?

• We've seen

• new Promise()
• Promise.resolve()
• Promise.reject()
• p.then();
• p.catch();

• What's left?

• Promise.all()
• Promise.race()

• The final two methods of the Promise API are all() and race()

31

© Kenneth M. Anderson, 2016

Promise.all()

• Promise.all() takes an array of promises and returns a new promise

• If all of the input promises resolve, then the new promise resolves

• If one of the input promises rejects, then the new promise rejects

• Let's return to our example that used callbacks to determine the size of all
files in a given directory

• The solution with promises is a little longer but the specification of the
asynchronous workflow is MUCH cleaner; it looks like this

• get_files('.').then(filter).then(gather).then(sum).then(report).catch(fail);

• Each step happens asynchronously but it is guaranteed to either report the
total size or print out an error message; it makes use of Promise.all() twice!

32
[file_total.js]

© Kenneth M. Anderson, 2016

Promise.race()

• Promise.race() takes an array of promises and returns a new promise

• The first promise to resolve has its value fulfill the new promise

• The first promise to reject causes the new promise to reject with its reason

• i.e. it's a race! The first promise to do something (resolve or reject) wins!

• I have two examples to demonstrate the use of Promise.race();

• race.js: a simple demonstration of the API call

• fastest_size.js: a more complicated example where we calculate the
sizes of all the files in the directory but only report the result for the
fastest fs.stat() call!

33

© Kenneth M. Anderson, 2016

Introduction Complete!

• With that, we have been introduced to the new approach to handling
asynchronous events in JavaScript.

• Where might you encounter the use of promises? Everywhere!

• Promises are being used to handle asynchronous events in

• server side frameworks like node and its vast array of modules

• web frameworks like React and Angular

• consider a common workflow

• receive request to update user;

• retrieve user from database

• update user with new info

• persist user back to database

• send back HTML that shows updated user (redirect to /user/:id)

• BUT, if any of these steps fail, show error page (redirect to /error)

• Promises: get(user).then(update).then(persist).then(show).catch(error);

34

© Kenneth M. Anderson, 2016

Summary

• We built on our introduction to asynchronous Javascript by covering promises

• promises address many of the problems of callback hell

• no more pyramid of doom

• well-known invocation semantics

• asynchronous workflows with well-defined error handling

35

