
© Kenneth M. Anderson, 2016

The Actor Model, Part Four

CSCI 5828: Foundations of Software Engineering

Lecture 16 — 10/13/2016

1

© Kenneth M. Anderson, 2016

Goals

• Introduce OTP

• GenServer: a module for creating Elixir actors

• Supervisor: a module for creating actors that manage other actors

• Provide examples throughout

2

© Kenneth M. Anderson, 2016

OTP and GenServer (I)

• We've now seen multiple examples of actor-based systems in Elixir

• In almost every example, our server process

• had to be spawned (and linked) with an initial state

• had to implement a "recursive" loop that accepted the current state

• had to implement message handlers that would update the state as
needed

• had to come up with a way to identify when the server was done, so it
could shutdown cleanly

• had to be able to send messages back to its clients when needed

• None of this code is difficult but it can be tedious and easy to make mistakes

3

© Kenneth M. Anderson, 2016

OTP and GenServer (II)

• As a result, a framework called OTP implements a "behavior" called
GenServer that can be included in a module to standardize that code

• Once we include GenServer

• we get default implementations of six callback methods

• we override these methods to specify application-specific behavior

• Those methods are:

• init(initial_state): provides opportunity to initialize server

• handle_call(message, {client, tag}, current_state): handle a

message that needs a reply; typically return { :reply, response, new_state}

• handle_cast(message, current_state): handle a message that does

not need a reply; typically return {:noreply, new_state}

• handle_info; terminate; code_change; format_status: see textbook

4

© Kenneth M. Anderson, 2016

OTP and GenServer (III)

• There are a two shared responses for handle_call and handle_cast

• {:noreply, new_state}: update the state without replying to the client

• {:stop, reason, new_state}: signal the server should stop

• There are two additional responses for handle_call:

• {:reply, response, new_state}: update state and reply to the client

• {:stop, reason, reply, new_state}: return a reply and then signal

that the server should stop

• The :reply and :noreply responses can be augmented with options:

• :hibernate: Tell the server to store state to disk and go to "sleep" until
next message arrives

• timeout: Tell the server to send itself a timeout message if it doesn't
receive a message in the specified number of milliseconds

5

http://elixir-lang.org/docs/stable/elixir/GenServer.html

© Kenneth M. Anderson, 2016

Simple Example (I)

6

parameters: the call argument and the current state. And because it doesn’t
want to send a reply, it will return the tuple {:noreply, new_state}.

Let’s modify our sequence server to support an :increment_number function. We’ll
treat this as a cast, so it simply sets the new state and returns.

otp-server/1/sequence/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer

def handle_call(:next_number, _from, current_number) do

{ :reply, current_number, current_number+1 }
end

def handle_cast({:increment_number, delta}, current_number) do➤

{ :noreply, current_number + delta}➤

end➤

end

Notice that the cast handler takes a tuple as its first parameter. The first
element is :increment_number, and is used by pattern matching to select the
handlers to run. The second element of the tuple is the delta to add to our
state. The function simply returns a tuple, where the state is the previous
state plus this number.

To call this from our iex session, we first have to recompile our source. The
r command takes a module name and recompiles the file containing that
module.

iex> r Sequence.Server
.../sequence/lib/sequence/server.ex:2: redefining module Sequence.Server
{Sequence.Server,[Sequence.Server]]

Even though we’ve recompiled the code, the old version is still running. The
VM doesn’t hot-swap code until you explicitly access it by module name. So,
to try our new functionality we’ll create a new server. When it starts, it will
pick up the latest version of the code.

iex> { :ok, pid } = GenServer.start_link(Sequence.Server, 100)
{:ok,#PID<0.60.0>}
iex> GenServer.call(pid, :next_number)
100
iex> GenServer.call(pid, :next_number)
101
iex> GenServer.cast(pid, {:increment_number, 200})
:ok
iex> GenServer.call(pid, :next_number)
302

Chapter 17. OTP: Servers • 222

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

Simple Example (II)

• Use GenServer.start_link to create a new instance of a GenServer actor

• Use GenServer.call for a blocking call to a GenServer actor

• User GenServer.cast for a non-blocking call to a GenServer actor

7

parameters: the call argument and the current state. And because it doesn’t
want to send a reply, it will return the tuple {:noreply, new_state}.

Let’s modify our sequence server to support an :increment_number function. We’ll
treat this as a cast, so it simply sets the new state and returns.

otp-server/1/sequence/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer

def handle_call(:next_number, _from, current_number) do

{ :reply, current_number, current_number+1 }
end

def handle_cast({:increment_number, delta}, current_number) do➤

{ :noreply, current_number + delta}➤

end➤

end

Notice that the cast handler takes a tuple as its first parameter. The first
element is :increment_number, and is used by pattern matching to select the
handlers to run. The second element of the tuple is the delta to add to our
state. The function simply returns a tuple, where the state is the previous
state plus this number.

To call this from our iex session, we first have to recompile our source. The
r command takes a module name and recompiles the file containing that
module.

iex> r Sequence.Server
.../sequence/lib/sequence/server.ex:2: redefining module Sequence.Server
{Sequence.Server,[Sequence.Server]]

Even though we’ve recompiled the code, the old version is still running. The
VM doesn’t hot-swap code until you explicitly access it by module name. So,
to try our new functionality we’ll create a new server. When it starts, it will
pick up the latest version of the code.

iex> { :ok, pid } = GenServer.start_link(Sequence.Server, 100)
{:ok,#PID<0.60.0>}
iex> GenServer.call(pid, :next_number)
100
iex> GenServer.call(pid, :next_number)
101
iex> GenServer.cast(pid, {:increment_number, 200})
:ok
iex> GenServer.call(pid, :next_number)
302

Chapter 17. OTP: Servers • 222

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

Simple Example (III)

• Pass [debug: [:trace]] to generate tracing information for all calls

8

Tracing a Server’s Execution
The third parameter to start_link is a set of options. A useful one during devel-
opment is the debug trace, which logs message activity to the console.

We enable tracing using the debug option:

iex> {:ok,pid} = GenServer.start_link(Sequence.Server, 100, [debug: [:trace]])➤

{:ok,#PID<0.68.0>}
iex> GenServer.call(pid, :next_number)
DBG <0.68.0> got call next_number from <0.25.0>
DBG <0.68.0> sent 100 to <0.25.0>, new state 101
100
iex> GenServer.call(pid, :next_number)
DBG <0.68.0> got call next_number from <0.25.0>
DBG <0.68.0> sent 101 to <0.25.0>, new state 102
101

See how it traces the incoming call and the response we send back. A nice
touch is that it also shows the next state.

We can also include :statistics in the debug list to ask a server to keep some
basic statistics:

iex> {:ok,pid} = GenServer.start_link(Sequence.Server, 100, [debug: [:statistics]])➤

{:ok,#PID<0.69.0>}
iex> GenServer.call(pid, :next_number)
100
iex> GenServer.call(pid, :next_number)
101
iex> :sys.statistics pid, :get
{:ok,[start_time: {{2013,4,26},{18,17,16}}, current_time: {{2013,4,26},{18,17,28}},

reductions: 50, messages_in: 2, messages_out: 0]}

Most of the fields should be fairly obvious. Timestamps are given as
{{y,m,d},{h,m,s}} tuples. And the reductions value is a measure of the amount of
work the server does. It is used in process scheduling as a way of making
sure all processes get a fair share of the available CPU.

The Erlang sys module is your interface to the world of system messages.
These are sent in the background between processes—they’re a bit like the
backchatter in a multiplayer video game. While two players are engaged in
an attack (their real work), they can also be sending each other background
messages: “Where are you?”, “Stop moving”, and so on.

The list associated with the debug parameter you give to GenServer is simply
the names of functions to call in the sys module. If you say [debug: [:trace,

report erratum • discuss

An OTP Server • 223

Prepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

Simple Example (IV)

• Pass [debug: [:statistics]] to generate tracking of common server stats

9

Tracing a Server’s Execution
The third parameter to start_link is a set of options. A useful one during devel-
opment is the debug trace, which logs message activity to the console.

We enable tracing using the debug option:

iex> {:ok,pid} = GenServer.start_link(Sequence.Server, 100, [debug: [:trace]])➤

{:ok,#PID<0.68.0>}
iex> GenServer.call(pid, :next_number)
DBG <0.68.0> got call next_number from <0.25.0>
DBG <0.68.0> sent 100 to <0.25.0>, new state 101
100
iex> GenServer.call(pid, :next_number)
DBG <0.68.0> got call next_number from <0.25.0>
DBG <0.68.0> sent 101 to <0.25.0>, new state 102
101

See how it traces the incoming call and the response we send back. A nice
touch is that it also shows the next state.

We can also include :statistics in the debug list to ask a server to keep some
basic statistics:

iex> {:ok,pid} = GenServer.start_link(Sequence.Server, 100, [debug: [:statistics]])➤

{:ok,#PID<0.69.0>}
iex> GenServer.call(pid, :next_number)
100
iex> GenServer.call(pid, :next_number)
101
iex> :sys.statistics pid, :get
{:ok,[start_time: {{2013,4,26},{18,17,16}}, current_time: {{2013,4,26},{18,17,28}},

reductions: 50, messages_in: 2, messages_out: 0]}

Most of the fields should be fairly obvious. Timestamps are given as
{{y,m,d},{h,m,s}} tuples. And the reductions value is a measure of the amount of
work the server does. It is used in process scheduling as a way of making
sure all processes get a fair share of the available CPU.

The Erlang sys module is your interface to the world of system messages.
These are sent in the background between processes—they’re a bit like the
backchatter in a multiplayer video game. While two players are engaged in
an attack (their real work), they can also be sending each other background
messages: “Where are you?”, “Stop moving”, and so on.

The list associated with the debug parameter you give to GenServer is simply
the names of functions to call in the sys module. If you say [debug: [:trace,

report erratum • discuss

An OTP Server • 223

Prepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

Simple Example (V)

• Add a simple client interface to the server module; clients can now use this
interface, rather than dealing with start_link and pids themselves

10

start_link must return the correct status values to OTP; as our code simply
delegates to the GenServer module, this is taken care of.

Following the definition of start_link, the next two functions are the external
API to issue call and cast requests to the running server process.

We’ll also use the name of the module as our server’s registered local name
(hence the name: __MODULE__ when we start it, and the __MODULE__ parameter
when we use call or cast).

otp-server/2/sequence/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer

#####
External API

def start_link(current_number) do➤

GenServer.start_link(__MODULE__, current_number, name: __MODULE__)
end

def next_number do➤

GenServer.call __MODULE__, :next_number
end

def increment_number(delta) do➤

GenServer.cast __MODULE__, {:increment_number, delta}
end

#####
GenServer implementation

def handle_call(:next_number, _from, current_number) do

{ :reply, current_number, current_number+1 }
end

def handle_cast({:increment_number, delta}, current_number) do

{ :noreply, current_number + delta}
end

def format_status(_reason, [_pdict, state]) do

[data: [{'State', "My current state is '#{inspect state}', and I'm happy"}]]
end

end

When we run this code in iex, it’s a lot cleaner:

$ iex -S mix
iex> Sequence.Server.start_link 123
{:ok,#PID<0.57.0>}
iex> Sequence.Server.next_number
123
iex> Sequence.Server.next_number
124
iex> Sequence.Server.increment_number 100

Chapter 17. OTP: Servers • 228

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

Exercise for Reader: Implement a Stack

• In this chapter, the book asks the reader to implement an actor that acts like a
stack

• we start with implementing the "pop" operation

• and then we'll add an operation to push something onto the stack

• First, we create a new mix project and create a file for our code

• mix new stack

• cd stack

• mkdir lib/stack

• vi lib/stack/server.ex

11

© Kenneth M. Anderson, 2016

Implementing Stack (I)

• Start with the basic template

• We can now create an instance of our stack actor (it won't do anything yet)

• iex -S mix
• {:ok, pid} = GenServer.start_link(Stack.Server, [1, 2, 3, "four"])
• => Prints "Starting Stack actor with state: [1, 2, 3, "four"]"

12

© Kenneth M. Anderson, 2016

Implementing Stack (II)

• Now, we implement the "pop" operation using handle_call

• We use handle_call since we want a caller to block until a reply is received

• iex -S mix
• {:ok, pid} = GenServer.start_link(Stack.Server, [1, 2, 3, "four"])
• GenServer.call(pid, :pop) # call this five times
• => Returns 1, 2, 3, "four", and nil

13

© Kenneth M. Anderson, 2016

Implementing Stack (III)

• Now, we implement the "push" operation using handle_cast

• We use handle_cast since we don't need a reply when pushing onto a stack

• iex -S mix
• {:ok, pid} = GenServer.start_link(Stack.Server, [1, 2, 3, "four"])
• GenServer.cast(pid, {:push, 5}) # adds 5 to stack
• => Prints "New state: [5, 1, 2, 3, "four"]"

14

© Kenneth M. Anderson, 2016

Implementing Stack (IV)

• Now, let's implement a "stop" operation to terminate a Stack actor

• We use handle_cast since we don't need a reply for this situation

• iex -S mix
• {:ok, pid} = GenServer.start_link(Stack.Server, [1, 2, 3, "four"])
• GenServer.cast(pid, :stop)
• => Prints "New state: [5, 1, 2, 3, "four"]"

15

© Kenneth M. Anderson, 2016

Supervisors

• OTP provides a behavior (i.e. module) that makes it easy to

• create actors that supervise other actors (workers)

• restart workers according to a defined policy

• handle restart loops (launch => crash => restart => crash => …)

• mix is able to generate a template for us when an application involves one
type supervisor handling one type of worker

• mix new --sup sequence2

• Open up lib/sequence2.ex

16

© Kenneth M. Anderson, 2016

Supervisor Template

17

You can write supervisors as separate modules, but the Elixir style is to
include them inline. The easiest way to get started is to create your project
with the --sup flag. Let’s do this for our sequence server.

$ mix new --sup sequence➤

* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/sequence.ex
* creating test
* creating test/test_helper.exs
* creating test/sequence_test.exs

Nothing looks different, but open lib/sequence.ex.

defmodule Sequence do

use Application

def start(_type, _args) do

import Supervisor.Spec, warn: false

children = [
Define workers and child supervisors to be supervised
worker(Sequence.Worker, [arg1, arg2, arg3])

]

opts = [strategy: :one_for_one, name: Sequence.Supervisor]
Supervisor.start_link(children, opts)

end

end

Our start function now creates a supervisor for our application. All we need
to do is tell it what we want supervised. Create a lib/sequence directory and copy
the Sequence.Server module from the last chapter into it. Then uncomment the
worker call in the children list to reference it.

otp-supervisor/1/sequence/lib/sequence.ex
def start(_type, _args) do

import Supervisor.Spec, warn: false

children = [
worker(Sequence.Server, [123])➤

]

opts = [strategy: :one_for_one, name: Sequence.Supervisor]
{:ok, _pid} = Supervisor.start_link(children, opts)

end

Let’s look at the sequence of events.

Chapter 18. OTP: Supervisors • 232

report erratum • discussPrepared exclusively for Ken Anderson

Template creates a single supervisor that will relaunch its child workers
"one for one"; uses Supervisor.start_link to create the supervisor

© Kenneth M. Anderson, 2016

Fill in the template (I)

• To prepare, we take the Sequence.Server app from earlier in the lecture, and

• copy it to lib/sequence2

• rename it to be called Sequence2.Server

• update the template to reference this new worker type

• Note: this particular GenServer is set-up to only ever have one instance

• For now, we ask the Supervisor to only create one child worker

18

© Kenneth M. Anderson, 2016

Fill in the template (II)

• Here we update the template to contain a value in the children array

• We would add one entry to the array for each child we want the supervisor
to manage; for now, we just create one child

• Note: our actual code will read Sequence2.Server

19

You can write supervisors as separate modules, but the Elixir style is to
include them inline. The easiest way to get started is to create your project
with the --sup flag. Let’s do this for our sequence server.

$ mix new --sup sequence➤

* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/sequence.ex
* creating test
* creating test/test_helper.exs
* creating test/sequence_test.exs

Nothing looks different, but open lib/sequence.ex.

defmodule Sequence do

use Application

def start(_type, _args) do

import Supervisor.Spec, warn: false

children = [
Define workers and child supervisors to be supervised
worker(Sequence.Worker, [arg1, arg2, arg3])

]

opts = [strategy: :one_for_one, name: Sequence.Supervisor]
Supervisor.start_link(children, opts)

end

end

Our start function now creates a supervisor for our application. All we need
to do is tell it what we want supervised. Create a lib/sequence directory and copy
the Sequence.Server module from the last chapter into it. Then uncomment the
worker call in the children list to reference it.

otp-supervisor/1/sequence/lib/sequence.ex
def start(_type, _args) do

import Supervisor.Spec, warn: false

children = [
worker(Sequence.Server, [123])➤

]

opts = [strategy: :one_for_one, name: Sequence.Supervisor]
{:ok, _pid} = Supervisor.start_link(children, opts)

end

Let’s look at the sequence of events.

Chapter 18. OTP: Supervisors • 232

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

Using the supervisor

• With this set-up, iex will call "start" for us automatically

• That in turn creates a supervisor which then creates the Sequence server.

• If we do something to cause the Sequence server to fail, then it gets restarted

• Such as Sequence2.Server.increment_number "ken"

• When this happens, however, we lose our state. If we had incremented the
number, we're no longer where we were; instead, the state goes back to its
original value

• To fix that, we need to create another actor to store the state for us and a
second supervisor that manages this new actor (called the stash) and a
new supervisor for the current supervisor

• We will look at that design in a moment

20

© Kenneth M. Anderson, 2016

Supervisors: What have we learned so far?

• Supervisors are just actors; when we create them, we get back a process id

• e.g. {:ok, _pid} = Supervisor.start_link(children, opts)

• We launch Supervisors with a call to Supervisor.start_link

• Documentation for Supervisor

• Supervisors manage child processes which can be either GenServer actors or
other Supervisors; this allows supervision hierarchies to be created

• There are several ways to attach children to a supervisor; but no matter which
method you use, you need to provide a "spec" for that child

• How do you do that? With methods in Supervisor.Spec

• Let's see what these look like

21

http://elixir-lang.org/docs/stable/elixir/Supervisor.html#content
http://elixir-lang.org/docs/stable/elixir/Supervisor.Spec.html#content

© Kenneth M. Anderson, 2016

Supervision Specifications (I)

• We can gain insight into these specs using iex (as always)

• iex -S mix # within the sequence3 mix project

• import Supervisor.Spec, warn: false # bring spec functions into scope

• worker(Sequence.Server, [500]) # create a worker spec

• => Returns a tuple about the worker with a number of default options

• {Sequence.Server, {Sequence.Server, :start_link,
[500]}, :permanent, 5000, :worker, [Sequence.Server]}

• worker(Sequence.Server, [500], restart: :temporary, shutdown: :infinity)

• {Sequence.Server, {Sequence.Server, :start_link,
[500]}, :temporary, :infinity, :worker, [Sequence.Server]}

• In this case, we passed in some arguments about how we want the
worker to behave when restarting and shutting down

22

© Kenneth M. Anderson, 2016

Supervision Specifications (II)

• We can also add a supervisor as a child. Instead of calling worker, we
instead call supervisor

• iex -S mix # within the sequence3 mix project

• import Supervisor.Spec, warn: false # bring spec functions into scope

• supervisor(Sequence3.SubSupervisor, [self])

• => Returns a tuple about the supervisor with default options

• {Sequence3.SubSupervisor,
{Sequence3.SubSupervisor, :start_link,
[#PID<0.112.0>]}, :permanent, :infinity, :supervisor,
[Sequence3.SubSupervisor]}

23

© Kenneth M. Anderson, 2016

Returning to the code

• This approach to launching a supervisor is just one way of doing it

• We define the children specs in an array; create an array of options; and
pass both arrays to Supervisor.start_link

• Another approach is to define the supervisor as a module

24

You can write supervisors as separate modules, but the Elixir style is to
include them inline. The easiest way to get started is to create your project
with the --sup flag. Let’s do this for our sequence server.

$ mix new --sup sequence➤

* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/sequence.ex
* creating test
* creating test/test_helper.exs
* creating test/sequence_test.exs

Nothing looks different, but open lib/sequence.ex.

defmodule Sequence do

use Application

def start(_type, _args) do

import Supervisor.Spec, warn: false

children = [
Define workers and child supervisors to be supervised
worker(Sequence.Worker, [arg1, arg2, arg3])

]

opts = [strategy: :one_for_one, name: Sequence.Supervisor]
Supervisor.start_link(children, opts)

end

end

Our start function now creates a supervisor for our application. All we need
to do is tell it what we want supervised. Create a lib/sequence directory and copy
the Sequence.Server module from the last chapter into it. Then uncomment the
worker call in the children list to reference it.

otp-supervisor/1/sequence/lib/sequence.ex
def start(_type, _args) do

import Supervisor.Spec, warn: false

children = [
worker(Sequence.Server, [123])➤

]

opts = [strategy: :one_for_one, name: Sequence.Supervisor]
{:ok, _pid} = Supervisor.start_link(children, opts)

end

Let’s look at the sequence of events.

Chapter 18. OTP: Supervisors • 232

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

Module-based Supervisors

• Here we create a module and import the Supervisor behavior; we call a
version of start link that defines the name of the supervisor and its initial state;
this causes the init function to be called;

• In init, we define our child workers and options and call "supervise"

25

On line 4 we start up the supervisor. This automatically invokes the init call-
back. This in turn calls supervise, but passes in an empty list. The supervisor
is now running but has no children.

At this point, OTP returns control to our start_link function, which then calls
the start_workers function. This starts the stash worker, passing it the initial
number. We get back a status of (:ok) and a PID. We then pass the PID to the
subsupervisor.

This subsupervisor is basically the same as our very first supervisor—it simply
spawns the sequence worker. But instead of passing in a current number, it
passes in the stash’s PID.

otp-supervisor/2/sequence/lib/sequence/sub_supervisor.ex
defmodule Sequence.SubSupervisor do

use Supervisor

def start_link(stash_pid) do

{:ok, _pid} = Supervisor.start_link(__MODULE__, stash_pid)
end

def init(stash_pid) do

child_processes = [worker(Sequence.Server, [stash_pid])]
supervise child_processes, strategy: :one_for_one

end

end

The sequence worker has two changes. First, when it is initialized it must get
the current number from the stash. Second, when it terminates it stores the
then-current number back in the stash. To make these changes, we’ll override
two more GenServer callbacks: init and terminate.

otp-supervisor/2/sequence/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer

#####
External API

def start_link(stash_pid) do

{:ok, _pid} = GenServer.start_link(__MODULE__, stash_pid, name: __MODULE__)
end

def next_number do

GenServer.call __MODULE__, :next_number
end

def increment_number(delta) do

GenServer.cast __MODULE__, {:increment_number, delta}
end

Chapter 18. OTP: Supervisors • 236

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

Module-based Supervisors with Dynamic Children

• Here, we create a supervisor with no children and then add them later
26

Main Supervisor

SubsupervisorStash Worker

Sequence
Worker

Here we have a top-level supervisor that is responsible for the health of two
things: the stash worker and a second supervisor. That second supervisor
then manages the worker that generates the sequence.

Our sequence generator needs to know the PID of the stash in order to retrieve
and store the sequence value. We could register the stash process under a
name (just as we did with the sequence worker itself), but as this is purely a
local affair, we can pass it the PID directly. However, to do that we need to
get the stash worker spawned first. This leads to a slightly different design
for the top-level supervisor. We’ll move the code that starts the top-level
supervisor out of sequence.ex and into a separate module. Then we’ll initialize
it with no children and add the stash and the subsupervisor manually. Once
we start the stash worker, we’ll have its PID, and we can then pass it on to
the subsupervisor (which in turn will pass it to the sequence worker). Our
overall supervisor looks like this:

otp-supervisor/2/sequence/lib/sequence/supervisor.ex
defmodule Sequence.Supervisor doLine 1

use Supervisor-

def start_link(initial_number) do-

result = {:ok, sup } = Supervisor.start_link(__MODULE__, [initial_number])-

start_workers(sup, initial_number)5

result-

end-

def start_workers(sup, initial_number) do-

Start the stash worker-

{:ok, stash} =10

Supervisor.start_child(sup, worker(Sequence.Stash, [initial_number]))-

and then the subsupervisor for the actual sequence server-

Supervisor.start_child(sup, supervisor(Sequence.SubSupervisor, [stash]))-

end-

def init(_) do15

supervise [], strategy: :one_for_one-

end-

end-

report erratum • discuss

Supervisors and Workers • 235

Prepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2016

What are Strategies?

• The most common argument specified for a supervisor is its "strategy"

• This refers to what does a supervisor do when one of its workers dies?

• These are the options

• :one_for_one => if a child dies, only that process is restarted

• :one_for_all => if a child dies

• all other child processes are terminated

• all children are then restarted

• :rest_for_one => if a child dies

• all child processes that started after it are terminated

• then the child plus these other children are restarted

• :simple_one_for_one => used in the situation where children are
dynamically added and removed over the course of the application

27

© Kenneth M. Anderson, 2016

Sequence program "with memory"

• We now return to our example where we would like to make sure that

• when a sequence server dies, it doesn't forget its state

• We will see examples of both types of module-based supervisors in this
program

• Recall that the idea is that the sequence server will store its state in
another actor and can then retrieve it

• Let's look at the supervision hierarchy that we will use

28

© Kenneth M. Anderson, 2016

Supervision Tree

29

Primary

SecondaryStash

Sequence
A top-level supervisor will manage the
"stash" and a second-level supervisor;
the second-level supervisor will
manage the Sequence server as in the
previous example

© Kenneth M. Anderson, 2016

Making the Change

• We'll review the code next but, at a high level, we do the following

• We move the creation of a supervisor out of the main start method

• Instead, it invokes a special purpose start_link method in a new module

• That new module creates the primary supervisor

• and adds two children to it

• the stash (it receives our initial sequence number)

• and the secondary supervisor (it receives the pid of the stash)

• The secondary supervisor then creates an instance of the sequence server
and passes it the pid of the stash

• The sequence server is modified to keep track of its state, plus the pid of
the stash; it reads its starting value from the stash and it writes its current
number to the stash whenever it is terminated

30

© Kenneth M. Anderson, 2016

Wrapping Up

• We've scratched the surface of OTP and seen the basic support for

• creating servers with GenServer

• learned about the various callback methods: init, handle_call,
handle_cast, terminate, etc.

• creating supervisors with Supervisor

• saw two different ways of creating a supervisor

• one in which the children are specified ahead of time

• the second in which a supervisor is started with zero children and
then child actors are added to it dynamically.

• We will next learn about OTP applications and conclude our review of using
Elixir for building distributed concurrent applications

31

