he Actor Model, Part Four

CSCI 5828: Foundations of Software Engineering
Lecture 16 — 10/13/2016

© Kenneth M. Anderson, 2016

(Goals

* Introduce OTP
» GenServer: a module for creating Elixir actors
* Supervisor: a module for creating actors that manage other actors

* Provide examples throughout

© Kenneth M. Anderson, 2016

OTP and GenServer (|)

« We've now seen multiple examples of actor-based systems in Elixir
* In almost every example, our server process

 had to be spawned (and linked) with an initial state

had to implement a "recursive"” loop that accepted the current state

had to implement message handlers that would update the state as
needed

had to come up with a way to identify when the server was done, so it
could shutdown cleanly

had to be able to send messages back to its clients when needed

* None of this code is difficult but it can be tedious and easy to make mistakes

© Kenneth M. Anderson, 2016

OTP and GenServer (lI)

+ As a result, a framework called OTP implements a "behavior" called
GenServer that can be included in a module to standardize that code

* Once we include GenServer
* we get default implementations of six callback methods
* we override these methods to specify application-specific behavior
* Those methods are:
* init(initial_state): provides opportunity to initialize server

* handle_call(message, {client, tag}, current_state): handle a
message that needs a reply; typically return { :reply, response, new_state}

* handle_cast(message, current_state): handle a message that does
not need a reply; typically return {:noreply, new_state}

* handle_info; terminate; code_change; format_status: see textbook

© Kenneth M. Anderson, 2016

OTP and Genserver (ll1)

- There are a two shared responses for handle_call and handle_cast
- {:noreply, new_state}: update the state without replying to the client
- {:stop, reason, new_state}: signal the server should stop

« There are two additional responses for handle_call:
- {:reply, response, new_state}: update state and reply to the client

- {:stop, reason, reply, new_state}: return a reply and then signal
that the server should stop

* The :reply and :noreply responses can be augmented with options:

- :hibernate: Tell the server to store state to disk and go to "sleep” until
next message arrives

- timeout: Tell the server to send itself a timeout message if it doesn't
receive a message Iin the specified number of milliseconds

© Kenneth M. Anderson, 2016

http://elixir-lang.org/docs/stable/elixir/GenServer.html

Simple Example (1)

defmodule Sequence.Server do
use GenServer

def handle call(:next number, from, current number) do
{ :reply, current number, current number+l }
end

def handle cast({:increment number, delta}, current number) do
{ :noreply, current number + delta}
end
end

© Kenneth M. Anderson, 2016

Simple Example (ll)

iex> { :o0k, pid } = GenServer.start link(Sequence.Server, 100)
{:0k,#PID<0.60.0>}

iex> GenServer.call(pid, :next number)

100

iex> GenServer.call(pid, :next number)

101

iex> GenServer.cast(pid, {:increment number, 200})

: 0k

iex> GenServer.call(pid, :next number)

302

- Use GenServer.start_1link to create a new instance of a GenServer actor
« Use GenServer.call for a blocking call to a GenServer actor
- User GenServer.cast for a non-blocking call to a GenServer actor

© Kenneth M. Anderson, 2016

Simple Example (Ill)

iex> {:0k,pid} = GenServer.start link(Sequence.Server, 100, [debug: [:tracell)
{:0k,#PID<0.68.0>}

iex> GenServer.call(pid, :next number)

DBG <0.68.0> got call next number from <0.25.0>

DBG <0.68.0> sent 100 to <0.25.0>, new state 101

100

iex> GenServer.call(pid, :next number)

DBG <0.68.0> got call next number from <0.25.0>

DBG <0.68.0> sent 101 to <0.25.0>, new state 102

101

- Pass [debug: [:trace]] to generate tracing information for all calls

© Kenneth M. Anderson, 2016

Simple Example (IV)

iex> {:0k,pid} = GenServer.start link(Sequence.Server, 100, [debug: [:statistics]])

{:0k,#PID<0.69.0>}

iex> GenServer.call(pid, :next number)

100

iex> GenServer.call(pid, :next number)

101

iex> :sys.statistics pid, :get

{:0k,[start time: {{2013,4,26},{18,17,16}}, current time: {{2013,4,26},{18,17,28}},
reductions: 50, messages in: 2, messages out: 0]}

- Pass [debug: [:statistics]] to generate tracking of common server stats

© Kenneth M. Anderson, 2016

Simple Example (V)

HH#HHH
External API

def start link(current number) do

GenServer.start link(MODULE , current number, name: MODULE)
end

def next number do
GenServer.call MODULE , :next number
end

def increment number(delta) do

GenServer.cast MODULE , {:increment number, delta}
end

* Add a simple client interface to the server module; clients can now use this
interface, rather than dealing with start_link and pids themselves

© Kenneth M. Anderson, 2016 10

—xercise for Reader: Implement a Stack

* In this chapter, the book asks the reader to implement an actor that acts like a
stack

- we start with implementing the "pop" operation
- and then we'll add an operation to push something onto the stack
* First, we create a new mix project and create a file for our code

e MmiX new stack

e cd stack
e mkdir Llib/stack

e vi lib/stack/server.ex

© Kenneth M. Anderson, 2016 11

Implementing Stack (l)

- Start with the basic template
defmodule Stack.Server do

use GenServer

def init(state) do

I0.puts("Starting Stack actor with state: #{inspect state}'")
{:0k, state}
end

end

* We can now create an instance of our stack actor (it won't do anything yet)

e 1ex -S mix
e {:0k, pid} = GenServer.start_link(Stack.Server, [1, 2, 3, "four'"])
e => Prints "Starting Stack actor with state: [1, 2, 3, "four"]"

© Kenneth M. Anderson, 2016

12

Implementing Stack (ll)

- Now, we implement the "pop" operation using handle_call

def handle_call(:pop, _from, []) do
{:reply, nil, []1}

end

def handle_call(:pop, _from, [head | taill]) do
1:reply, head, tail}
end

* We use handle_call since we want a caller to block until a reply is received

jex =S mix

{:0k, pid} = GenServer.start_link(Stack.Server, [1, 2, 3, "four"])
GenServer.call(pid, :pop) # call this five times

=> Returns 1, 2, 3, "four", and nil

© Kenneth M. Anderson, 2016

13

Implementing Stack (lll)

- Now, we implement the "push” operation using handle_cast

def handle_cast({:push, value}, state) do
I0.puts("New state: #{inspect [value|state] }")

{:noreply, [value|state]}
end

* We use handle_cast since we don't need a reply when pushing onto a stack

iex -S mix

{:0k, pid} = GenServer.start_link(Stack.Server, [1, 2, 3, "four"])
GenServer.cast(pid, {:push, 5}) # adds 5 to stack

=> Prints "New state: [5, 1, 2, 3, "four"]"

© Kenneth M. Anderson, 2016

14

Implementing Stack (1V)

* Now, let's implement a "stop" operation to terminate a Stack actor

def handle_cast({:push, value}, state) do
I0.puts("New state: #{inspect [value|state] }")

{:noreply, [value|state]}
end

» We use handle_cast since we don't need a reply for this situation

jex =S mix

{:0k, pid} = GenServer.start_link(Stack.Server, [1, 2, 3, "four"])
GenServer.cast(pid, :stop)

=> Prints "New state: [5, 1, 2, 3, "four"]"

© Kenneth M. Anderson, 2016 15

SUPErVISors

* OTP provides a behavior (i.e. module) that makes it easy to
» create actors that supervise other actors (workers)
* restart workers according to a defined policy
- handle restart loops (launch => crash => restart => crash => ...)

* mix Iis able to generate a template for us when an application involves one
type supervisor handling one type of worker

* MIX New --sup sequence?

« Open up lib/sequence?2.ex

© Kenneth M. Anderson, 2016

16

Supervisor Template

defmodule Sequence do
use Application

def start(type, args) do
import Supervisor.Spec, warn: false

children = [
Define workers and child supervisors to be supervised
worker(Sequence.Worker, [arqgl, arg2, arg3])

]

opts = [strategy: :one for one, name: Sequence.Supervisor]
Supervisor.start link(children, opts)
end
end

Template creates a single supervisor that will relaunch its child workers
‘one for one"; uses Supervisor.start_link to create the supervisor

© Kenneth M. Anderson, 2016 17

Fill in the template (l)

- To prepare, we take the Sequence.Server app from earlier in the lecture, and
 copy it to lib/sequence2
* rename it to be called Sequence2.Server
* update the template to reference this new worker type

* Note: this particular GenServer is set-up to only ever have one instance

* For now, we ask the Supervisor to only create one child worker

© Kenneth M. Anderson, 2016

18

Fill in the template (l1)

def start(type, args) do
import Supervisor.Spec, warn: false

children = [
worker(Sequence.Server, [123])

]

opts [strategy: :one for one, name: Sequence.Supervisor]
{:0k, pid} = Supervisor.start link(children, opts)
end

- Here we update the template to contain a value in the children array

- We would add one entry to the array for each child we want the supervisor
to manage; for now, we just create one child

« Note: our actual code will read Sequence2.Server

© Kenneth M. Anderson, 2016

19

Using the supervisor

« With this set-up, iex will call "start" for us automatically

» That in turn creates a supervisor which then creates the Sequence server.
* If we do something to cause the Sequence server to fail, then it gets restarted
« Such as Sequence2.Server.increment_number "ken"

* When this happens, however, we lose our state. If we had incremented the
number, we're no longer where we were; instead, the state goes back to its

original value

 To fix that, we need to create another actor to store the state for us and a
second supervisor that manages this new actor (called the stash) and a
new supervisor for the current supervisor

- We will look at that design in a moment

© Kenneth M. Anderson, 2016 20

Supervisors: What have we learned so far?

Supervisors are just actors; when we create them, we get back a process id

* e.9. {:o0k, _pid} = Supervisor.start_link(children, opts)

We launch Supervisors with a call to Supervisor.start_1link

» Documentation for Supervisor

Supervisors manage child processes which can be either GenServer actors or
other Supervisors; this allows supervision hierarchies to be created

There are several ways to attach children to a supervisor; but no matter which
method you use, you need to provide a "spec” for that child

- How do you do that? With methods in Supervisor.Spec

 Let's see what these look like

© Kenneth M. Anderson, 2016 21

http://elixir-lang.org/docs/stable/elixir/Supervisor.html#content
http://elixir-lang.org/docs/stable/elixir/Supervisor.Spec.html#content

Supervision Specifications (I)

« We can gain insight into these specs using iex (as always)
* iex -S mix # within the sequence3 mix project
* import Supervisor.Spec, warn: false # bring spec functions into scope
- worker (Sequence.Server, [500]) # create a worker spec
» => Returns a tuple about the worker with a number of default options

e {Sequence.Server, {Sequence.Server, :start_Llink,
[500]}, :permanent, 5000, :worker, [Sequence.Server]}

e worker (Sequence.Server, [500], restart: :temporary, shutdown: :infinity)

e {Sequence.Server, {Sequence.Server, :start_link,
[500]}, :temporary, :infinity, :worker, [Sequence.Server]}

* In this case, we passed in some arguments about how we want the
worker to behave when restarting and shutting down

© Kenneth M. Anderson, 2016 22

Supervision Specifications (l1)

- We can also add a supervisor as a child. Instead of calling worker, we
Instead call supervisor

- iex -S mix # within the sequence3 mix project
+ import Supervisor.Spec, warn: false # bring spec functions into scope
« supervisor (Sequence3.SubSupervisor, [self])

- => Returns a tuple about the supervisor with default options

e {Sequence3.SubSupervisor,
{Sequence3.SubSupervisor, :start_link,
[#PID<0.112.0>]}, :permanent, :infinity, :supervisor,
[Sequence3.SubSupervisor]}

© Kenneth M. Anderson, 2016 23

Returning to the code

def start(type, args) do
import Supervisor.Spec, warn: false

children = [
worker(Sequence.Server, [123])

]

opts [strategy: :one for one, name: Sequence.Supervisor]
{:0k, pid} = Supervisor.start link(children, opts)
end

 This approach to launching a supervisor is just one way of doing it

* We define the children specs in an array; create an array of options; and
pass both arrays to Supervisor.start_link

* Another approach is to define the supervisor as a module

© Kenneth M. Anderson, 2016

24

Module-based Supervisors

defmodule Sequence.SubSupervisor do
use Supervisor

def start link(stash pid) do
{:0k, pid} = Supervisor.start link(MODULE , stash pid)

end

def init(stash pid) do
child processes = [worker(Sequence.Server, [stash pid])]
supervise child processes, strategy: :one for one

end

end

* Here we create a module and import the Supervisor behavior; we call a
version of start link that defines the name of the supervisor and its initial state;
this causes the init function to be called;

* In init, we define our child workers and options and call "supervise”

© Kenneth M. Anderson, 2016 25

Module-based Supervisors with Dynamic Children

defmodule Sequence.Supervisor do
use Supervisor
def start link(initial number) do

result = {:0k, sup } = Supervisor.start link(MODULE , [initial number])
start workers(sup, initial number)
result

end

def start workers(sup, initial number) do
Start the stash worker
{:0k, stash} =
Supervisor.start child(sup, worker(Sequence.Stash, [initial number]))
and then the subsupervisor for the actual sequence server
Supervisor.start child(sup, supervisor(Sequence.SubSupervisor, [stash]))
end
def init() do
supervise [], strategy: :one for one
end

end

* Here, we create a supervisor with no children and then add them later
© Kenneth M. Anderson, 2016 26

What are Strategies”

* The most common argument specified for a supervisor is its "strategy”
 This refers to what does a supervisor do when one of its workers dies?
* These are the options
» :one_for_one => if a child dies, only that process is restarted
» :one_for_all => if a child dies
- all other child processes are terminated
- all children are then restarted
» :rest_for_one => if a child dies
- all child processes that started after it are terminated
* then the child plus these other children are restarted
* :simple_one_for_one => used in the situation where children are

dynamically added and removed over the course of the application

© Kenneth M. Anderson, 2016

27

Seqguence program “with memory”

* We now return to our example where we would like to make sure that
- when a sequence server dies, it doesn't forget its state

* We will see examples of both types of module-based supervisors in this
program

* Recall that the idea is that the sequence server will store its state in
another actor and can then retrieve it

* Let's look at the supervision hierarchy that we will use

© Kenneth M. Anderson, 2016

28

Supervision Tree

Primary

Secondary

A top-level supervisor will manage the

"stash” and a second-level supervisor; Sequence
the second-level supervisor will

manage the Sequence server as in the
previous example

© Kenneth M. Anderson, 2016

29

Making the Change

- We'll review the code next but, at a high level, we do the following
* We move the creation of a supervisor out of the main start method
* Instead, it invokes a special purpose start_link method in a new module
- That new module creates the primary supervisor
- and adds two children to it
» the stash (it receives our initial sequence number)
 and the secondary supervisor (it receives the pid of the stash)

* The secondary supervisor then creates an instance of the sequence server
and passes it the pid of the stash

* The sequence server is modified to keep track of its state, plus the pid of
the stash; it reads its starting value from the stash and it writes its current
number to the stash whenever it is terminated

© Kenneth M. Anderson, 2016

30

Wrapping Up

- We've scratched the surface of OTP and seen the basic support for
» creating servers with GenServer

« learned about the various callback methods: init, handle call,
handle_cast, terminate, etc.

- creating supervisors with Supervisor
- saw two different ways of creating a supervisor
+ one in which the children are specified ahead of time

» the second in which a supervisor is started with zero children and
then child actors are added to it dynamically.

« We will next learn about OTP applications and conclude our review of using
Elixir for building distributed concurrent applications

© Kenneth M. Anderson, 2016 31

