
© Kenneth M. Anderson, 2016

The Actor Model, Part Three

CSCI 5828: Foundations of Software Engineering

Lecture 15 — 10/11/2016

1

© Kenneth M. Anderson, 2016

Goals

• Cover another example of using processes in Elixir

• Taken from the following book

• The Little Elixir & OTP Guidebook by Benjamin Tan Wei Hao

• Published by Manning (last week!)

• Introduce the ability to run processes on multiple nodes

2

https://www.manning.com/books/the-little-elixir-and-otp-guidebook

© Kenneth M. Anderson, 2016

Retrieving Temperature Information

• Present one more basic example of Elixir processes

• This program can be used to look up the temperatures of an array of cities

• The code is deployed in a mix project

• I can't distribute this code but it can be downloaded from Manning

• Let's review the code now.

• To run this project, we invoke the interpreter with the following command

• iex -S mix

• and then enter the following at the prompt

• cities = ["Singapore", "Monaco", "Vatican City", "Hong Kong", "Macau"]
• Metex.temperatures_of(cities)

3

© Kenneth M. Anderson, 2016

Discussion

• Once again, the solution is strikingly straightforward

• A worker takes care of making a web service call to retrieve the
information for a single city

• A coordinator takes care of waiting for all the responses

• A client function takes care of creating the workers and telling the
coordinator how many responses to accept

• In this program, the coordinator prints out the results when all of them
have been received

• The solution developed by an entirely different author is still very much in line
with the design we saw last week with the Fibonacci calculator

4

© Kenneth M. Anderson, 2015

Nodes and Distribution

• The Erlang virtual machine is used to execute Elixir programs

• In an analogous way that Clojure programs compile down to Java
bytecodes and are executed by the Java Virtual Machine

• One cool feature of Erlang virtual machines is that they have the capability to
act as nodes that can form clusters

• Elixir actors running on one node can easily route messages to actors
running on other (possibly) distributed nodes

• To set this up in Elixir, you can launch iex and give it a node name

• For security reasons, you also give it a “cookie”; only nodes with the same
“cookie” can talk to one another

• iex --sname node_one --cookie jiriki <— can be any string

5

© Kenneth M. Anderson, 2015

Connecting Nodes

• Once you have launched a node, you need to tell it about the other nodes

• iex --sname node1 --cookie jiriki

• iex --sname node2 --cookie jiriki

• Checking status

• node1> Node.self => :"node1@<domain_name>"

• node2> Node.self => :"node2@<domain_name>"

• Connecting

• node1> Node.connect(:"node2@<domain_name>") => true

• Both nodes are now connected to each other

• node1> Node.list => [:"node2@<domain_name>"]

• node2> Node.list => [:"node1@<domain_name>"]

6

© Kenneth M. Anderson, 2015

Sending Code Between Nodes

• Let’s define a function

• node1> whoami = fn -> IO.inspect(Node.self) end

• And send it to another node to be executed

• node1> Node.spawn(:"node2@<domain_name>", whoami)

• node1 REPL prints: node2@<domain_name>

• Pause to think about what we just did and how easy it was

• We just

• defined a function

• sent it over to another machine as data

• that machine converted the data back to a function

• executed it

• sent back the result

• and our original machine then displayed the result

7

© Kenneth M. Anderson, 2016

Ticker: Client-Server Example (I)

• Our book now delves into a simple client-server example

• The server is a program that generates notifications every two seconds

• It provides a method that allows clients to subscribe to its events

• The client is a simple program that registers with the server and prints out a
message for each event

• Let's review the code now

• Note: when a client sends its pid to a different machine, it automatically gets
translated into a pid that refers back to it on the other machine

• no need for your code to worry about details like that! :-)

8

© Kenneth M. Anderson, 2016

Ticker: Client-Server Example (II)

• To run the example

• launch two iex servers named node1 and node2 using the same cookie

• connect the nodes together

• compile ticker.ex in each of them

• In node1, start up the server and client

• Ticker.start

• Client.start

• In node2, start up the client

• Client.start

• Watch the messages fly across the screen! :-)

9

© Kenneth M. Anderson, 2016

Input/Output and Nodes (I)

• In the Erlang VM, input and output are handled by I/O servers that are
implemented as processes

• As with all processes, they have an associated pid

• we can communicate with these servers via this pid

• not exactly

• we pass the pid to a function called map_dev

• that function returns a device that is then used to perform I/O

• You can get the default device (i.e. standard output) of an Erlang VM by
calling the function :erlang.group_leader()

10

© Kenneth M. Anderson, 2016

Input/Output and Nodes (II)

• With this as background, we now have what we need to pass character data
from one VM to another

• Or to write output from one node to a file (i.e. a "device") on another node

• Watch

• start node1 and node2; connect them

• Now, associate standard out of node2 with a global name

• :global.register_name(:two, :erlang.group_leader)

• Retrieve that name using the "whereis" function on node1

• two = :global.whereis_name :two

• Send data from node1 to standard out on node2

• IO.puts(two, "Hello, "); IO.puts(two, "World!")

11

© Kenneth M. Anderson, 2016

Wrapping Up

• We saw another basic example of processes in action

• this time retrieving temperature information from a web service

• each web service call can take a different amount of time to process

• Elixir processes make it easy to deal with that uncertainty

• We simply tell our coordinator how many responses to expect and then
wait for them to arrive

• We then took a look at the material from our textbook on distributing
processes across nodes

• we ran the nodes on the same machine but the examples would have
worked just the same if the nodes ran on different machines

• what's remarkable is how easy it was to create a distributed program
using this paradigm

12

