he Actor Model, Part Three

CSCI 5828: Foundations of Software Engineering
Lecture 15 — 10/11/2016

© Kenneth M. Anderson, 2016



(Goals

» Cover another example of using processes in Elixir

» Taken from the following book

» The Little Elixir & OTP Guidebook by Benjamin Tan Wei Hao
 Published by Manning (last week!)

* Introduce the ability to run processes on multiple nodes

© Kenneth M. Anderson, 2016


https://www.manning.com/books/the-little-elixir-and-otp-guidebook

Retrieving Temperature Information

* Present one more basic example of Elixir processes
* This program can be used to look up the temperatures of an array of cities
* The code is deployed in a mix project
* | can't distribute this code but it can be downloaded from Manning
* Let's review the code now.
* To run this project, we invoke the interpreter with the following command
e iex -S mix
- and then enter the following at the prompt

e cities = ["Singapore'", '"Monaco", "Vatican City", "Hong Kong'", '"Macau']
e Metex.temperatures_of(cities)

© Kenneth M. Anderson, 2016



DISCUSSION

* Once again, the solution is strikingly straightforward

- A worker takes care of making a web service call to retrieve the
information for a single city

A coordinator takes care of waiting for all the responses

* A client function takes care of creating the workers and telling the
coordinator how many responses to accept

* In this program, the coordinator prints out the results when all of them
have been received

* The solution developed by an entirely different author is still very much in line
with the design we saw last week with the Fibonacci calculator

© Kenneth M. Anderson, 2016



Nodes and Distribution

- The Erlang virtual machine is used to execute Elixir programs

* In an analogous way that Clojure programs compile down to Java
bytecodes and are executed by the Java Virtual Machine

* One cool feature of Erlang virtual machines is that they have the capability to
act as nodes that can form clusters

- Elixir actors running on one node can easily route messages to actors
running on other (possibly) distributed nodes

» To set this up in Elixir, you can launch iex and give it a node name

- For security reasons, you also give it a “cookie”; only nodes with the same
“cookie” can talk to one another

* iex --sname node one --cookie jiriki <— can be any string

© Kenneth M. Anderson, 2015



Connecting Nodes

Once you have launched a node, you need to tell it about the other nodes

e 1ex —-sname nodel --cookie jiriki

e 1ex —-sname node2 --cookle jiriki

Checking status

* nodel> Node.self => :"nodel@<domain name>"
* nodeZ2> Node.self => :"nodeZ2@<domaln name>"
« Connecting
* nodel> Node.connect (:"nodeZ2l<domain name>") => true

Both nodes are now connected to each other
* nodel> Node.list => [:"node2@<domain name>"]

* node2> Node.list => [:"nodell@<domalin name>"]

© Kenneth M. Anderson, 2015



Sending Code Between Nodes

« Let’s define a function
e nodel> whoami = fn -> IO.inspect (Node.self) end

 And send it to another node to be executed
* nodel> Node.spawn (:"nodeZ2@<domain name>", whoami)

- node1l REPL prints: node2@<domain name>
» Pause to think about what we just did and how easy it was
* We just
- defined a function

sent it over to another machine as data

that machine converted the data back to a function

executed it

sent back the result

and our original machine then displayed the result

© Kenneth M. Anderson, 2015



Ticker: Client-Server Example (l)

Our book now delves into a simple client-server example

The server is a program that generates notifications every two seconds

- It provides a method that allows clients to subscribe to its events

The client is a simple program that registers with the server and prints out a
message for each event

* Let's review the code now

* Note: when a client sends its pid to a different machine, it automatically gets
translated into a pid that refers back to it on the other machine

* no need for your code to worry about details like that! :-)

© Kenneth M. Anderson, 2016



Ticker: Client-Server Example (ll)

* To run the example

launch two iex servers named nodel and node2 using the same cookie

connect the nodes together

compile ticker.ex in each of them

In node1, start up the server and client

* Ticker.start
« Client.start

In node2, start up the client

* Client.start

- Watch the messages fly across the screen! :-)

© Kenneth M. Anderson, 2016



Input/Output and Nodes (I)

* In the Erlang VM, input and output are handled by I/O servers that are
Implemented as processes

 As with all processes, they have an associated pid
* we can communicate with these servers via this pid
* not exactly
* we pass the pid to a function called map_dev
- that function returns a device that is then used to perform I/O

* You can get the default device (i.e. standard output) of an Erlang VM by
calling the function :erlang.group_leader()

© Kenneth M. Anderson, 2016

10



Input/Output and Nodes (Il)

- With this as background, we now have what we need to pass character data
from one VM to another

» Or to write output from one node to a file (i.e. a "device") on another node
- Watch
- start node1 and node2; connect them
* Now, associate standard out of node2 with a global name
- :global.register_name(:two, :erlang.group_leader)
* Retrieve that name using the "whereis" function on node1
- two = :global.whereis_name :two

« Send data from node1 to standard out on node2
* 10.puts(two, "Hello, "); 10.puts(two, "World!")

© Kenneth M. Anderson, 2016

11



Wrapping Up

- We saw another basic example of processes in action
- this time retrieving temperature information from a web service
* each web service call can take a different amount of time to process
* Elixir processes make it easy to deal with that uncertainty

* We simply tell our coordinator how many responses to expect and then
wait for them to arrive

* We then took a look at the material from our textbook on distributing
processes across nodes

* we ran the nodes on the same machine but the examples would have
worked just the same if the nodes ran on different machines

» what's remarkable is how easy it was to create a distributed program
using this paradigm

© Kenneth M. Anderson, 2016

12



