he Actor Model, Part Two

CSCI 5828: Foundations of Software Engineering
Lecture 14 — 10/06/2016

© Kenneth M. Anderson, 2016

(Goals

» Cover a more advanced example of using processes in Elixir
- Review the material on process linking

« and show how we can then introduce the notion of process supervision

© Kenneth M. Anderson, 2016

Fibonacci Calculator (l)

* Let’s jump back into Elixir and the Actor model
- We’ll take a look at using Actors to calculate Fibonacci numbers
- 0,1,1,2,3,5,8, 13, ...

» Our example will calculate a set of Fibonacci numbers using a different
number of actors

- starting with one actor and proceeding up to ten actors running at once

© Kenneth M. Anderson, 2016

=lixir Function Composition

* In order to understand the source code of the example, we must review
Elixir's function composition operator, also known as the “pipe operator”

- If you had a series of statement like this

a = f£(x); b =g(a); ¢ = h(b)
* You could also write it like this

*c = h(g(f(x)))
* In Elixir, you would write it like this

eCc =X |> % |> g |> h

* X Is piped into f, the result is piped into g, the result is piped into h

* The functions on the right hand side can have parameters

« x |> f(y, z) isequivalentto calling £ (x, vy, z) —the value being
piped becomes the first argument of the function on the right hand side

© Kenneth M. Anderson, 2016

Fibonacci Calculator (lI)

» To start our Fibonacci example, we first design two actors

* A solver: is able to calculate the nth Fibonacci number

« A scheduler: distributes calculation requests to a set of 1 or more solvers
A solver will sit in loop and do the following

« [t sends {:ready, pid} tothe scheduler
- It will then receive a : £ib message asking it to calculate a number
- When it is done, it will send an : answer message to the scheduler
« The solver will perform these actions until it receives a : shutdown message

« The scheduler will receive an array of integers that represent the Fibonacci
numbers to calculate

- it will send out : £ib messages to solvers until all requests are complete

© Kenneth M. Anderson, 2016

Fibonacci Calculator (ll1)

 The solver

defmodule FibSolver do

1

2

3 def fib(scheduler) do

4 send(scheduler, {:ready, self})

5 receive do

6 {:£ib, n, client} ->

7 send(client, {:answer, n, fib calc(n), self})
8

fib(scheduler)
9 {:shutdown} -> exit(:normal)
10 end
11 end
12

13 defp fib calc(0) do 0 end

14 defp fib calc(l) do 1 end

15 defp fib calc(n) do fib calc(n-1) + fib calc(n-2) end
16 end

© Kenneth M. Anderson, 2016

Fibonacci Calculator (IV): The Scheduler

1l defmodule Scheduler do

2

3 def run(num processes, module, func, to calculate) do

4 (1..num processes)

5 |> Enum.map(fn(_) -> spawn(module, func, [self]) end)

6 |> schedule processes(to calculate, [])

7 end

8

9 defp schedule processes(processes, queue, results) do

10 receive do

11 {:ready, pid} when length(queue) > 0 ->

12 [next | tail] = queue

13 send(pid, {:fib, next, self})

14 schedule processes(processes, tail, results)

15

16 {:ready, pid} ->

17 send(pid, {:shutdown})

18 if length(processes) > 1 do

19 schedule processes(List.delete(processes, pid), queue, results)
20 else

21 Enum.sort(results, fn ({nl, _}, {n2, }) -> nl <= n2 end)
22 end

23

24 {:answer, number, result, pid} ->

25 schedule processes(processes, queue, [{number, result} | results])
26 end

27 end

28 end

Fibonacci Calculator (V): Main Program

47 to process = [37, 37, 37, 37, 37, 37]
48

49 Enum.each(1l..10, fn (num processes) ->
50 {time, result} =

51 :timer.tc(Scheduler, :run,

52 [nhum processes, FibSolver, :fib, to process])
53

54 if num processes == 1 do

55 I0O.puts inspect result

56 IO0.puts "\n # time (s)"

57 end

58 :io.format "~-2B ~.2f~-n", [num processes, time/1000000.0]
59 end)

© Kenneth M. Anderson, 2016

Fibonacci Calculator (VI): Results

* On my 8-core machine, the results are:

I time (s)

e 1 6.22

¢ 2 3.07

e 3 2.10

¢ 4 2.14

e 5 2.43

* 0 1.65 <== almost 4 times as fast
¢ 7/ 1.72

e 8 1.77

e 9 1.78

e 10 1.89 <== roughly 3.3 times as fast on average

© Kenneth M. Anderson, 2016

DISCUSSION

 Striking how simple the implementation of the FibSolver Actor is
- small piece of code with a defined “message API”
* program can then spin up as many of these actors as they want
* The scheduler is more complex BUT
* it implemented scheduling in a very generic way
* the function being calculated was completely abstracted away
* the logic simply took care of providing work to all ready actors
- and then shutting down actors when no more work was available

» With 11 active actors (10 solvers + 1 scheduler): Elixir has flexibility as to how
those actors are distributed across the cores of the machine

© Kenneth M. Anderson, 2016 10

Making Fibonacci More Efficient

« See page 204 of our textbook to understand why our Fibonacci solver takes a
while to calculate the result of fib(37)

* We can make our solver way more efficient (and eliminate the need for our
program above) using Elixir's Agent module.

» Using agents, we can quickly specify the state of an actor and how that
state can be updated

 For Fibonacci, the basic idea of making it more efficient is to remember all of
our previous calculations; have code like this in a function called "do_fib"

{ n 1, cache } = do fib(cache, n-1)
result = n 1 + cache[n-2]
{ result, Map.put (cache, n, result) }

© Kenneth M. Anderson, 2016 11

—rror Handling and Resilience

 Actors provide the ability to write fault-tolerant code

» We can assign a supervisor to a set of actors that detects when an actor
has crashed and can do something about it

* such as restart the actor

* They way they do this is by linking the actors together (as we saw in
Lecture 20)

* First: Process.flag(:trap_exit, true)
« Second: pid = spawn_link(...)
 Third: receive do {:EXIT, pid, reason}

- We’re going to build up an example that demonstrates these concepts

© Kenneth M. Anderson, 2016

An Actor to Test Links: LinkTest

1 defmodule LinkTest do

2 def loop do

3 receive do

4 {:exit because, reason} -> exit(reason)
5 {:1ink to, pid} -> Process.link(pid)

6 {:EXIT, pid, reason} -> IO.puts("#{inspect(pid)} exited because #{reason}")
7 end

8 loop

9 end
10
11 def loop system do
12 Process.flag(:trap exit, true)
13 loop
14 end
15 end

An actor that can link to other actors via :link_to; otherwise it can be
told to die by sending it a :exit_because message

f we want to receive :EXIT messages, we need to invoke this actor with
the loop_system call. Otherwise, we can just call loop to see what
nappens when an actor exits for a non :normal reason

© Kenneth M. Anderson, 2016 13

—xample: Linked Actors; Non-Normal Exit

 Create two instances of the actor
e p1dl = spawn (LinkTest, :loop, [])
e p1d2 = spawn (LinkTest, :loop, [])
* Link them (links are bidirectional)

* send (pidl, {:1link to, pid2})

- Tell one to quit for a non-normal reason (it doesn’t matter which actor)

 send(p1d2, {:exit because, :bad thing})
* The result?
* BOTH actors die; no :EXIT message received

« We can check this with Process.info: Process.info (pid2,

© Kenneth M. Anderson, 2016

:status)

14

—xample: Linked Actors; Normal Exit

 Create two instances of the actor
e pidl = spawn (&LinkTest.loop/0)
e pid2 = spawn (&LinkTest.loop/0)
* Link them (links are bidirectional)
* send (pidl, {:1link to, pid2})
» Tell one to quit for a normal reason (it doesn’t matter which actor)
 send(p1d2, {:exit because, :normal})
* The result?

» Actor 2 dies; Actor 1 lives; still no :EXIT message received

© Kenneth M. Anderson, 2016

15

—xample: Linked System Actors; Non-Normal

 Create two instances of the actor
* pidl = spawn (LinkTest, :loop system, [])
e pid2 = spawn (&LinkTest.loop/0)
* Link them (links are bidirectional)
* send (pidl, {:1link to, pid2})
» Tell one to quit for a normal reason (it doesn’t matter which actor)
 send(p1d2, {:exit because, :bad thing})
* The result?

* Actor 2 dies; Actor 1 lives; :EXIT message received and logged

© Kenneth M. Anderson, 2016

—XI1

16

Creating a Supervisor

- We now have enough knowledge to create an actor and its supervisor

* The idea is that we can implement a process that monitors the state of
other processes and, if they crash, attempts to restart them

- We will create an actor that will "cache" values for us
» The cache will be able to
* receive a request to store something in the cache
* receive a request to retrieve something in the cache
* receive a request to return the size of the cache (in bytes)
* The supervisor will create a cache actor and monitor its status

- If it goes down, it will restart the cache

© Kenneth M. Anderson, 2016

17

Cache

1 defmodule Cache do

2 def loop(pages, size) do

3 receive do

4 {:put, url, page} ->

5 new pages = Dict.put(pages, url, page)
6 new size = size + byte size(page)

7 loop (new pages, new size)

8 {:get, sender, ref, url} ->

9 send(sender, {:0k, ref, pages[url]})
10 loop (pages, size)
11 {:size, sender, ref} ->
12 send(sender, {:0k, ref, size})
13 loop(pages, size)
14 {:terminate} -> # Terminate request - don't recurse
15 end
16 end

17 end

We can cause this actor to
crash by sending nil for page

in a :put message

© Kenneth M. Anderson, 2016

18

Cache Helper Routines

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

def start link do

pid = spawn link(MODULE , :loop, [HashDict.new, 01])

Process.register(pid, :cache)
pid
end

def put(url, page) do
send(:cache, {:put, url, page})
end

def get(url) do
ref = make ref()
send(:cache, {:get, self(), ref, url})
receive do
{:0k, "ref, page} -> page
end
end

def size do
ref = make ref()
send(:cache, {:size, self(), ref})
receive do
{:0k, "ref, s} -> s
end
end

def terminate do
send(:cache, {:terminate})
end

These functions provide an
“API” to the Cache. We can
call them and not worry
about starting actors and
sending messages.

19

Cache Supervisor

DEMO

1 defmodule CacheSupervisor do

2

3 def start do

4 spawn(MODULE , :loop system, [])

5 end

6

7 def loop do

8 pid = Cache.start link

9 receive do Start up a Cache. If it crashes,
10 {:EXIT, “pid, :normal} -> : : :

11 I0.puts("Cache exited normally") restart It; OtherWISe QUIJ[

12 :0k

13 {:EXIT, “pid, reason} ->

14 TIO0.puts("Cache failed with reason #{inspect reason} - restarting it")
15 loop

16 end

17 end

18

19 def loop system do
20 Process.flag(:trap exit, true) .
21 loop Make sure we call :trap_exit to
22 end - [
>3 end receive :EXIT messages

© Kenneth M. Anderson, 2016 20

Using the Cache

* In iex, compile both modules
e c("cache.ex")
* c("cache supervisor.ex")
- Start by creating the supervisor (which creates the Cache, its worker)

« CacheSupervisor.start link

* Then just use the Cache
e Cache.size => 0
e Cache.put “foo”, %“bar” => :0k

e Cache.size => 3

e Cache.put "“ohnoes”, nil => error message; auto restart
e Cache.size => 0

 To cleanly kill both processes, just type Cache.terminate

© Kenneth M. Anderson, 2015 21

DISCUSSION

* This example illustrates a generic approach to concurrent actor systems
» Keep the supervisors as small and as simple as possible
* So simple that they are easy to debug and get correct
- Have the actors that they supervise crash when things go wrong
 Let the supervisors detect those crashes and decide what to do
 This approach maximizes simplicity
* rather than adding lots of error checking code in the workers

* implement the success case and let all error cases cause a crash that
gets handled by the supervisor => a nice separation of concerns

© Kenneth M. Anderson, 2016

22

Wrapping Up

We saw a more advanced example of processes via the Fibonacci example

* The scheduler demonstrated how we make use of immutable data
structures to maintain state

« and how to transition to a new state on well-defined boundaries

We saw that our implementation of the Fibonacci calculation was inefficient
and that Elixir's agents module can be used to implement caching

We then returned to the notion of linking processes and saw how it forms the
basis of process supervision

Up next: distributing processes over multiple nodes

© Kenneth M. Anderson, 2016

23

