
© Kenneth M. Anderson, 2016

The Actor Model, Part Two

CSCI 5828: Foundations of Software Engineering

Lecture 14 — 10/06/2016

1

© Kenneth M. Anderson, 2016

Goals

• Cover a more advanced example of using processes in Elixir

• Review the material on process linking

• and show how we can then introduce the notion of process supervision

2

© Kenneth M. Anderson, 2016

Fibonacci Calculator (I)

• Let’s jump back into Elixir and the Actor model

• We’ll take a look at using Actors to calculate Fibonacci numbers

• 0, 1, 1, 2, 3, 5, 8, 13, …

• Our example will calculate a set of Fibonacci numbers using a different
number of actors

• starting with one actor and proceeding up to ten actors running at once

3

© Kenneth M. Anderson, 2016

Elixir Function Composition

• In order to understand the source code of the example, we must review
Elixir’s function composition operator, also known as the “pipe operator”

• If you had a series of statement like this

• a = f(x); b = g(a); c = h(b)

• You could also write it like this

• c = h(g(f(x)))

• In Elixir, you would write it like this

• c = x |> f |> g |> h

• x is piped into f, the result is piped into g, the result is piped into h

• The functions on the right hand side can have parameters

• x |> f(y, z) is equivalent to calling f(x, y, z) —the value being
piped becomes the first argument of the function on the right hand side

4

© Kenneth M. Anderson, 2016

Fibonacci Calculator (II)

• To start our Fibonacci example, we first design two actors

• A solver: is able to calculate the nth Fibonacci number

• A scheduler: distributes calculation requests to a set of 1 or more solvers

• A solver will sit in loop and do the following

• It sends {:ready, pid} to the scheduler

• It will then receive a :fib message asking it to calculate a number

• When it is done, it will send an :answer message to the scheduler

• The solver will perform these actions until it receives a :shutdown message

• The scheduler will receive an array of integers that represent the Fibonacci
numbers to calculate

• it will send out :fib messages to solvers until all requests are complete

5

© Kenneth M. Anderson, 2016

Fibonacci Calculator (III)

• The solver

6

 1 defmodule FibSolver do
 2
 3 def fib(scheduler) do
 4 send(scheduler, {:ready, self})
 5 receive do
 6 {:fib, n, client} ->
 7 send(client, {:answer, n, fib_calc(n), self})
 8 fib(scheduler)
 9 {:shutdown} -> exit(:normal)
10 end
11 end
12
13 defp fib_calc(0) do 0 end
14 defp fib_calc(1) do 1 end
15 defp fib_calc(n) do fib_calc(n-1) + fib_calc(n-2) end
16 end

© Kenneth M. Anderson, 2016

Fibonacci Calculator (IV): The Scheduler

7

 1 defmodule Scheduler do
 2
 3 def run(num_processes, module, func, to_calculate) do
 4 (1..num_processes)
 5 |> Enum.map(fn(_) -> spawn(module, func, [self]) end)
 6 |> schedule_processes(to_calculate, [])
 7 end
 8
 9 defp schedule_processes(processes, queue, results) do
10 receive do
11 {:ready, pid} when length(queue) > 0 ->
12 [next | tail] = queue
13 send(pid, {:fib, next, self})
14 schedule_processes(processes, tail, results)
15
16 {:ready, pid} ->
17 send(pid, {:shutdown})
18 if length(processes) > 1 do
19 schedule_processes(List.delete(processes, pid), queue, results)
20 else
21 Enum.sort(results, fn ({n1, _}, {n2, _}) -> n1 <= n2 end)
22 end
23
24 {:answer, number, result, _pid} ->
25 schedule_processes(processes, queue, [{number, result} | results])
26 end
27 end
28 end

© Kenneth M. Anderson, 2016

Fibonacci Calculator (V): Main Program

8

 1 defmodule FibSolver do
 2
 3 def fib(scheduler) do
 4 send(scheduler, {:ready, self})
 5 receive do
 6 {:fib, n, client} ->
 7 send(client, {:answer, n, fib_calc(n), self})
 8 fib(scheduler)
 9 {:shutdown} -> exit(:normal)
10 end
11 end
12
13 defp fib_calc(0) do 0 end
14 defp fib_calc(1) do 1 end
15 defp fib_calc(n) do fib_calc(n-1) + fib_calc(n-2) end
16 end
17
18 defmodule Scheduler do
19
20 def run(num_processes, module, func, to_calculate) do
21 (1..num_processes)
22 |> Enum.map(fn(_) -> spawn(module, func, [self]) end)
23 |> schedule_processes(to_calculate, [])
24 end
25
26 defp schedule_processes(processes, queue, results) do
27 receive do
28 {:ready, pid} when length(queue) > 0 ->
29 [next | tail] = queue
30 send(pid, {:fib, next, self})
31 schedule_processes(processes, tail, results)
32
33 {:ready, pid} ->
34 send(pid, {:shutdown})
35 if length(processes) > 1 do
36 schedule_processes(List.delete(processes, pid), queue, results)
37 else
38 Enum.sort(results, fn ({n1, _}, {n2, _}) -> n1 <= n2 end)
39 end
40
41 {:answer, number, result, _pid} ->
42 schedule_processes(processes, queue, [{number, result} | results])
43 end
44 end
45 end
46
47 to_process = [37, 37, 37, 37, 37, 37]
48
49 Enum.each(1..10, fn (num_processes) ->
50 {time, result} =
51 :timer.tc(Scheduler, :run,
52 [num_processes, FibSolver, :fib, to_process])
53
54 if num_processes == 1 do
55 IO.puts inspect result
56 IO.puts "\n # time (s)"
57 end
58 :io.format "~2B ~.2f~n", [num_processes, time/1000000.0]
59 end)

© Kenneth M. Anderson, 2016

Fibonacci Calculator (VI): Results

• On my 8-core machine, the results are:

• # time (s)
• 1 6.22
• 2 3.07
• 3 2.10
• 4 2.14
• 5 2.43
• 6 1.65 <== almost 4 times as fast
• 7 1.72
• 8 1.77
• 9 1.78
• 10 1.89 <== roughly 3.3 times as fast on average

9

© Kenneth M. Anderson, 2016

Discussion

• Striking how simple the implementation of the FibSolver Actor is

• small piece of code with a defined “message API”

• program can then spin up as many of these actors as they want

• The scheduler is more complex BUT

• it implemented scheduling in a very generic way

• the function being calculated was completely abstracted away

• the logic simply took care of providing work to all ready actors

• and then shutting down actors when no more work was available

• With 11 active actors (10 solvers + 1 scheduler): Elixir has flexibility as to how
those actors are distributed across the cores of the machine

10

© Kenneth M. Anderson, 2016

Making Fibonacci More Efficient

• See page 204 of our textbook to understand why our Fibonacci solver takes a
while to calculate the result of fib(37)

• We can make our solver way more efficient (and eliminate the need for our
program above) using Elixir's Agent module.

• Using agents, we can quickly specify the state of an actor and how that
state can be updated

• For Fibonacci, the basic idea of making it more efficient is to remember all of
our previous calculations; have code like this in a function called "do_fib"

 { n_1, cache } = do_fib(cache, n-1)
 result = n_1 + cache[n-2]
 { result, Map.put(cache, n, result) }

11

© Kenneth M. Anderson, 2016

Error Handling and Resilience

• Actors provide the ability to write fault-tolerant code

• We can assign a supervisor to a set of actors that detects when an actor
has crashed and can do something about it

• such as restart the actor

• They way they do this is by linking the actors together (as we saw in
Lecture 20)

• First: Process.flag(:trap_exit, true)

• Second: pid = spawn_link(…)

• Third: receive do {:EXIT, pid, reason}

• We’re going to build up an example that demonstrates these concepts

12

© Kenneth M. Anderson, 2016

An Actor to Test Links: LinkTest

13

 1 defmodule LinkTest do
 2 def loop do
 3 receive do
 4 {:exit_because, reason} -> exit(reason)
 5 {:link_to, pid} -> Process.link(pid)
 6 {:EXIT, pid, reason} -> IO.puts("#{inspect(pid)} exited because #{reason}")
 7 end
 8 loop
 9 end
10
11 def loop_system do
12 Process.flag(:trap_exit, true)
13 loop
14 end
15 end

If we want to receive :EXIT messages, we need to invoke this actor with
the loop_system call. Otherwise, we can just call loop to see what
happens when an actor exits for a non :normal reason

An actor that can link to other actors via :link_to; otherwise it can be
told to die by sending it a :exit_because message

© Kenneth M. Anderson, 2016

Example: Linked Actors; Non-Normal Exit

• Create two instances of the actor

• pid1 = spawn(LinkTest, :loop, [])

• pid2 = spawn(LinkTest, :loop, [])

• Link them (links are bidirectional)

• send(pid1, {:link_to, pid2})

• Tell one to quit for a non-normal reason (it doesn’t matter which actor)

• send(pid2, {:exit_because, :bad_thing})

• The result?

• BOTH actors die; no :EXIT message received

• We can check this with Process.info: Process.info(pid2, :status)

14

© Kenneth M. Anderson, 2016

Example: Linked Actors; Normal Exit

• Create two instances of the actor

• pid1 = spawn(&LinkTest.loop/0)

• pid2 = spawn(&LinkTest.loop/0)

• Link them (links are bidirectional)

• send(pid1, {:link_to, pid2})

• Tell one to quit for a normal reason (it doesn’t matter which actor)

• send(pid2, {:exit_because, :normal})

• The result?

• Actor 2 dies; Actor 1 lives; still no :EXIT message received

15

© Kenneth M. Anderson, 2016

Example: Linked System Actors; Non-Normal Exit

• Create two instances of the actor

• pid1 = spawn(LinkTest, :loop_system, [])

• pid2 = spawn(&LinkTest.loop/0)

• Link them (links are bidirectional)

• send(pid1, {:link_to, pid2})

• Tell one to quit for a normal reason (it doesn’t matter which actor)

• send(pid2, {:exit_because, :bad_thing})

• The result?

• Actor 2 dies; Actor 1 lives; :EXIT message received and logged

16

© Kenneth M. Anderson, 2016

Creating a Supervisor

• We now have enough knowledge to create an actor and its supervisor

• The idea is that we can implement a process that monitors the state of
other processes and, if they crash, attempts to restart them

• We will create an actor that will "cache" values for us

• The cache will be able to

• receive a request to store something in the cache

• receive a request to retrieve something in the cache

• receive a request to return the size of the cache (in bytes)

• The supervisor will create a cache actor and monitor its status

• If it goes down, it will restart the cache

17

© Kenneth M. Anderson, 2016

Cache

18

 1 defmodule Cache do
 2 def loop(pages, size) do
 3 receive do
 4 {:put, url, page} ->
 5 new_pages = Dict.put(pages, url, page)
 6 new_size = size + byte_size(page)
 7 loop(new_pages, new_size)
 8 {:get, sender, ref, url} ->
 9 send(sender, {:ok, ref, pages[url]})
10 loop(pages, size)
11 {:size, sender, ref} ->
12 send(sender, {:ok, ref, size})
13 loop(pages, size)
14 {:terminate} -> # Terminate request - don't recurse
15 end
16 end
17 end

We can cause this actor to
crash by sending nil for page
in a :put message

© Kenneth M. Anderson, 2016

Cache Helper Routines

19

 1 defmodule Cache do
 2 def loop(pages, size) do
 3 receive do
 4 {:put, url, page} ->
 5 new_pages = Dict.put(pages, url, page)
 6 new_size = size + byte_size(page)
 7 loop(new_pages, new_size)
 8 {:get, sender, ref, url} ->
 9 send(sender, {:ok, ref, pages[url]})
10 loop(pages, size)
11 {:size, sender, ref} ->
12 send(sender, {:ok, ref, size})
13 loop(pages, size)
14 {:terminate} -> # Terminate request - don't recurse
15 end
16 end
17
18 def start_link do
19 pid = spawn_link(__MODULE__, :loop, [HashDict.new, 0])
20 Process.register(pid, :cache)
21 pid
22 end
23
24 def put(url, page) do
25 send(:cache, {:put, url, page})
26 end
27
28 def get(url) do
29 ref = make_ref()
30 send(:cache, {:get, self(), ref, url})
31 receive do
32 {:ok, ^ref, page} -> page
33 end
34 end
35
36 def size do
37 ref = make_ref()
38 send(:cache, {:size, self(), ref})
39 receive do
40 {:ok, ^ref, s} -> s
41 end
42 end
43
44 def terminate do
45 send(:cache, {:terminate})
46 end
47
48 end

These functions provide an
“API” to the Cache. We can
call them and not worry
about starting actors and
sending messages.

© Kenneth M. Anderson, 2016

Cache Supervisor

20

 1 defmodule CacheSupervisor do
 2
 3 def start do
 4 spawn(__MODULE__, :loop_system, [])
 5 end
 6
 7 def loop do
 8 pid = Cache.start_link
 9 receive do
10 {:EXIT, ^pid, :normal} ->
11 IO.puts("Cache exited normally")
12 :ok
13 {:EXIT, ^pid, reason} ->
14 IO.puts("Cache failed with reason #{inspect reason} - restarting it")
15 loop
16 end
17 end
18
19 def loop_system do
20 Process.flag(:trap_exit, true)
21 loop
22 end
23 end

Start up a Cache. If it crashes,
restart it; otherwise quit

Make sure we call :trap_exit to
receive :EXIT messages

DEMO

© Kenneth M. Anderson, 2015

Using the Cache

• In iex, compile both modules

• c("cache.ex")

• c("cache_supervisor.ex")

• Start by creating the supervisor (which creates the Cache, its worker)

• CacheSupervisor.start_link

• Then just use the Cache

• Cache.size => 0

• Cache.put “foo”, “bar” => :ok

• Cache.size => 3

• Cache.put “ohnoes”, nil => error message; auto restart

• Cache.size => 0

• To cleanly kill both processes, just type Cache.terminate

21

© Kenneth M. Anderson, 2016

Discussion

• This example illustrates a generic approach to concurrent actor systems

• Keep the supervisors as small and as simple as possible

• So simple that they are easy to debug and get correct

• Have the actors that they supervise crash when things go wrong

• Let the supervisors detect those crashes and decide what to do

• This approach maximizes simplicity

• rather than adding lots of error checking code in the workers

• implement the success case and let all error cases cause a crash that
gets handled by the supervisor => a nice separation of concerns

22

© Kenneth M. Anderson, 2016

Wrapping Up

• We saw a more advanced example of processes via the Fibonacci example

• The scheduler demonstrated how we make use of immutable data
structures to maintain state

• and how to transition to a new state on well-defined boundaries

• We saw that our implementation of the Fibonacci calculation was inefficient
and that Elixir's agents module can be used to implement caching

• We then returned to the notion of linking processes and saw how it forms the
basis of process supervision

• Up next: distributing processes over multiple nodes

23

