
© Kenneth M. Anderson, 2016

The Actor Model

CSCI 5828: Foundations of Software Engineering

Lecture 13 — 10/04/2016

1



© Kenneth M. Anderson, 2016

Goals

• Introduce the Actor Model of Concurrency


• isolation, message passing, message patterns


• Present examples from our textbook as well as from


• “Seven Concurrency Models in Seven Weeks” by Paul Butcher

2

https://pragprog.com/book/pb7con/seven-concurrency-models-in-seven-weeks


© Kenneth M. Anderson, 2016

Elixir: Types related to the Actor Model

• Elixir provides a wide range of types


• Value Types: integers, floats, atoms (like symbols in Ruby; keywords in 
Clojure); ranges (5..15), regular expressions and strings (aka binaries)


• Boolean values: true, false, nil


• In boolean contexts, only false and nil evaluate to false; everything else 
evaluates to true


• But system types are related to the Actor model:


• pids: a “process id”; not a Unix process, an Elixir process


• the function self will return the pid of the current process


• refs: a globally unique id

3



© Kenneth M. Anderson, 2016

Collection Types

• Elixir has the following collection types


• Tuples: an ordered collection of values


• { 1, :ok, “hello” } — you can use tuples in pattern matching


• We will use tuples to pass messages between actors


• Lists — a linked data structure with a head and a tail


• the head contains a value; the tail is another list; a list can be empty


• Maps — a collection of key-value pairs


• %{ key => value, key => value }

4



© Kenneth M. Anderson, 2016

Actors

• Elixir makes use of a novel approach to concurrency, pioneered by Erlang, 
called the Actor model


• In this model, actors are independent entities that run in parallel


• Actors encapsulate state that can change over time


• but that state is not shared with any other actor


• As a result, there can be no race conditions


• Actors communicate by sending messages to one another


• An actor will process its messages sequentially


• Concurrency happens because many actors can run in parallel


• but each actor is itself a sequential program


• an abstraction with which developers are comfortable

5



© Kenneth M. Anderson, 2016

Processes

• Actors are also called “processes”


• In most programming languages/operating systems


• processes are heavyweight entities


• In Elixir, a process is very lightweight in terms of resource consumption 
and start-up costs; lighter weight even than threads


• Elixir programs might launch thousands of processes all running concurrently


• and without the programmer having to create thread pools or manage 
concurrency explicitly (the Erlang virtual machine does that for you)


• Instead, Elixir programs make sure the right processes get started and then 
work is performed by passing messages to/between them

6



© Kenneth M. Anderson, 2016

Actor Architecture in Elixir

7

Machine
Core Core Core Core

Operating System Process

Thread Thread Thread Thread

Scheduler SchedulerSchedulerScheduler

Elixir 
Process

Elixir 
Process

Elixir 
Process

Elixir 
Process

Elixir 
Process

Elixir 
Process

Elixir 
Process

Elixir 
Process

Elixir 
Process

Elixir 
Process

Elixir 
Process

Elixir 
Process



© Kenneth M. Anderson, 2016

Messages and Mailboxes

• Messages in Elixir are asynchronous


• When you send a message to an actor, the message is placed instantly 
(actually copied) in the actor’s mailbox; the calling actor does not block


• Mailboxes in Elixir are queues


• Actors perform work in response to messages


• When an actor is ready, it pulls a message from its mailbox


• and responds to it, possibly sending other messages in response


• It then processes the next message, until the mailbox is empty


• at that point, it blocks waiting for a new message to arrive

8



© Kenneth M. Anderson, 2016

Actor Creation: spawn and spawn_link

• An actor is created by using the spawn function or the spawn_link function


• We will discuss spawn_link later in this lecture


• spawn takes a function and returns a “process identifier”, aka a pid


•  The function passed to spawn takes no arguments and


• its structure is expected to be an infinite loop


• at the start of the loop, a receive statement is specified


• this causes the actor to block until a message arrives in its mailbox


• The body of the receive statement specifies the messages that the 
actor responds to


• once a message is handled, the actor loops, executing the receive 
statement again, thus blocking until the next message arrives

9



© Kenneth M. Anderson, 2016

Simple Example (1)

one_message = fn () -> 
receive do 
{:hello} -> IO.puts(“HI!”) 

end 
end 
actor = spawn(one_message) 
send(actor, {:hello}) 

• This example creates an actor that can only respond to a single message. 
That message MUST be the tuple {:hello}. Any other message is ignored


• When the message {:hello} arrives, the actor prints out “HI!” and then 
the function of the actor returns. That is interpreted as a “normal” exit, 
similar to having the run() method of a Java thread return.


• Note: you can still send messages to the pid that was returned, those 
messages are simply ignored

10

DEMO: simple1.exs and 
simple2.exs



© Kenneth M. Anderson, 2016

Simple Example (2)

• To create a version of our actor that stays alive and can always respond to 
{:hello} messages, we need to use a named function inside of a module


defmodule HiThere do 
def hello do 
receive do 
{:hello} ->IO.puts(“HI!") 

end 
hello 

end 
end 

actor = spawn(HiThere, :hello, []) 
send(actor, {:hello}) => “HI!” 
send(actor, {:hello}) => “HI!” 
…

11

receive block

infinite loop

DEMO: simple3.exs

spawn/3



© Kenneth M. Anderson, 2016

Lots of Processes

• We mentioned that Elixir processes are lightweight

• What does that mean in practice?

• It means you can create LOTS of Elixir processes and it will NOT tax your 

machine; for instance, on my machine, this code creates 10,000 Elixir 
processes in 0.4 seconds!


defmodule Lots do 
  def loop do 
    receive do 
      {:hello} -> "HI!" 
    end 
    loop 
  end 
end 
pids = Enum.map(1..10_000, &(spawn(Lots, :loop, [])))

12

DEMO: lots.exs



© Kenneth M. Anderson, 2016

More Advanced Example (pg. 191-192 of textbook)

13

Although the recursive call is physically the last thing in the function, it is
not the last thing executed. The function has to multiply the value it returns
by n.

To make it tail recursive, we need to move the multiplication into the recursive
call, and this means adding an accumulator:

spawn/fact_tr.exs
defmodule TailRecursive do

def factorial(n), do: _fact(n, 1)
defp _fact(0, acc), do: acc
defp _fact(n, acc), do: _fact(n-1, acc*n)

end

Process Overhead
At the start of the chapter, I somewhat cavalierly said Elixir processes were
very low overhead. Now it is time to back that up. Let’s write some code that
creates n processes. The first will send a number to the second. It will incre-
ment that number and pass it to the third. This will continue until we get to
the last process, which will pass the number back to the top level.

spawn/chain.exs
defmodule Chain doLine 1

def counter(next_pid) do-

receive do-

n ->-

send next_pid, n + 15

end-

end-
-

def create_processes(n) do-

last = Enum.reduce 1..n, self,10

fn (_,send_to) ->-

spawn(Chain, :counter, [send_to])-

end-
-

send last, 0 # start the count by sending a zero to the last process15
-

receive do # and wait for the result to come back to us-

final_answer when is_integer(final_answer) ->-

"Result is #{inspect(final_answer)}"-

end20

end-
-

def run(n) do-

IO.puts inspect :timer.tc(Chain, :create_processes, [n])-

end25

end-

report erratum  •  discuss

Process Overhead • 191

Prepared exclusively for Ken Anderson

DEMO: chain.exs



© Kenneth M. Anderson, 2016

More Advanced Message Passing

• defmodule Talker do 
•   def loop do 
•     receive do 
•       {:greet, name} -> IO.puts("Hello #{name}") 
•       {:praise, name} -> IO.puts("#{name}, you're amazing!") 
•       {:celebrate, name, age} -> IO.puts(“HB #{name}. #{age} years old!") 
•     end 
•     loop 
•   end 
• end 

• pid = spawn(Talker, :loop, []) 
• send(pid, {:greet, "Ken"}) 
• send(pid, {:praise, "Lilja"}) 
• send(pid, {:celebrate, "Miles", 42}) 
• :timer.sleep(1000) # allow responses to be generated

14

DEMO: talker.exs



© Kenneth M. Anderson, 2016

Discussion (I)

• The actor specifies what messages it can process with receive

• Each message uses pattern matching specifying a literal atom (:praise) and 

a variable that then matched whatever was sent with the rest of the 
message

• {:praise, name} matches all 2-tuples that start with the :praise atom and 

then binds name to the second value

• that binding can then be used in the message handler


• IO.puts("#{name}, you're amazing!”) 

• The call to receive blocks the actor until there is a message to process

• The actor defines a single function: loop; loop is seemingly implemented as 

an infinite recursive loop because it calls loop after it calls receive

• however, tail call elimination implements this with a goto


• it’s a loop not a recursive call

15



© Kenneth M. Anderson, 2016

Discussion (II)

• The rest of the code is used to create the actor and send messages to it

• since the message sends are asynchronous, this code ends with a call 

to :timer.sleep (actually an Erlang function) to allow time for the messages 
to be received


• The call to spawn, returns a process id that allows us to send messages to 
the actor with the function send. send takes a pid and a tuple, adds the tuple 
to the actor’s mailbox and returns immediately

16



© Kenneth M. Anderson, 2016

Linking Actors

• We can establish better interactions with our actors if we link them


• Linked actors get notified if one of them goes down

• by either exiting normally or crashing


• To receive this notification, we have to tell the system to “trap the exit” of 
an actor; it then sends us a message in the form: {:EXIT, pid, reason} when 
an actor goes down but ONLY if we start the process using spawn_link


• We can modify our previous example to more cleanly shutdown by 
implementing another message


• {:shutdown} -> exit(:normal)


• We then call Process.flag(:trap_exit, true) in our main program, change it to 
send the shutdown message, and then wait for the system generated 
notification that the Talker actor shutdown.

17

DEMO: talker2.exs



© Kenneth M. Anderson, 2016

Maintaining State

• To maintain state in an actor, we can use pattern matching and recursion


• defmodule Counter do 
• def loop(count) do 

• receive do 
• {:next} -> 

• IO.puts(“Current count: #{count}”) 
• loop(count + 1) 

• end 
• end 

• end 

• counter = spawn(Counter, :loop, [1]) 
• send(counter, {:next}) => Current count: 1 
• send(counter, {:next}) => Current count: 2

18

DEMO: counter1.exs



© Kenneth M. Anderson, 2016

Hiding Messages

• You can add functions to your actor to hide the message passing from the 
calling code


• def start(count) do 
• spawn(Counter, :loop, [count]) 

• end 
• def next(counter) do 

• send(counter, {:next}) 
• end 

• These functions can then be called instead


• counter = Counter.start(23) 
• Counter.next(counter) => Current count: 23 
• Counter.next(counter) => Current count: 24

19

DEMO: counter2.exs



© Kenneth M. Anderson, 2016

Bidirectional Communication

• While asynchronous messages are nice


• there are times when we will want to ask an actor to do something and 
then wait for a reply from that actor to receive a value or confirmation that 
the work has been performed


• To do that, the calling actor (or main program) needs to


• generate a unique reference


• call send with a message that includes its pid (obtained via self)


• wait for a message that includes its ref and includes the response value


• Let’s look at a modified version of count that returns the actual count rather 
than print it out

20



© Kenneth M. Anderson, 2016

Receiving the Message in the Actor

• We update our actor to expect the pid of the caller and the unique ref


• def loop(count) do 
• receive do 

• {:next, sender, ref} -> 
• send(sender, {:ok, ref, count}) 
• loop(count + 1) 

• end 
• end 

• We now expect our incoming message to contain the sender’s pid and a 
unique ref. The :next atom still provides a unique “name” for the message


• We send the current count back to the caller and pass back its ref too

21



© Kenneth M. Anderson, 2016

Receiving the return value in the Caller

• The caller’s code has to change as well


• def next(counter) do 
• ref = make_ref() 
• send(counter, {:next, self, ref}) 
• receive do 

• {:ok, ^ref, count} -> count 
• end 

• end 

• In this function, we call make_ref() to get a unique reference. We then send 
the :next message to the actor. We then block on a call to receive, waiting for 
the response.


• The response’s ref must match the previous value of ref (i.e. ^ref) and then 
binds the return value to the count variable which is then returned

22

DEMO: counter3.exs



© Kenneth M. Anderson, 2016

Naming Actors

• You can associate names (atoms) with process ids, so you can refer to an 
actor symbolically


• Process.register(pid, :counter) 

• this call takes a pid returned by spawn or spawn_link and associates 
it with the :counter atom


• Now, when sending messages to that actor, you can use the atom


• send(:counter, {:next, self, ref})

23

DEMO: counter4.exs



© Kenneth M. Anderson, 2016

Reminder: Actors run in Parallel

• Here's a different implementation of Parallel.map


• defmodule Parallel do 
• def map(collection, fun) do 

• parent = self() 
• processes = Enum.map(collection, fn(e) -> 

• spawn_link(fn()  -> 
• send(parent, {self(), fun.(e)}) 

• end) 
• end) 
• Enum.map(processes, fn(pid) -> 

• receive do 
• {^pid, result} -> result 

• end 
• end) 

• end 
• end

24



© Kenneth M. Anderson, 2016

Parallel.map in action

25

[1, 2, 3, 4] add_one = fn(x) -> x + 1 end;

Take a PID of the calling process, a collection, and a function 

parent = self()

[#PID<0.57.0>, #PID<0.58.0>, #PID<0.59.0>, #PID<0.60.0>]

Transform it into a collection of pids of actors  

where each actor is set-up to take the 
original value, pass it to the function, 

and return it back to the calling process
 send(parent, {self(), fun.(e)})

 send(parent, {#PID<0.57.0>, add_one.(1)})
After the parent launches these processes, it then uses Enum.map 

to wait for the messages from each process



© Kenneth M. Anderson, 2016

Using Parallel

• slow_double = fn(x) -> :timer.sleep(1000); x * 2 end 
• :timer.tc(fn() -> Enum.map([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], slow_double) end) 
• :timer.tc(fn() -> Parallel.map([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], slow_double) end) 

• On my machine, the first call to :timer.tc returned


• {10010165, [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]} <= about 10 seconds 

• The second call returned


• {1001096, [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]} <= about 1 second 

• One process got launched per element of the input collection


• they all waited one second, and then returned their result.


• In the first call to :timer.tc, the delay of one second occurred ten times 
sequentially; and so the entire call to Enum.map took 10 seconds

26

DEMO: parallel.exs



© Kenneth M. Anderson, 2016

Summary

27

• We have had a brief introduction to the Actor model


• multiple actors run in parallel


• each has its own mailbox and processes messages sequentially


• to perform work, actors send asynchronous messages to each other


• if we need actors to wait for a response


• we can do that with refs and calls to receive


