he Actor Model

CSCI 5828: Foundations of Software Engineering
Lecture 13 — 10/04/2016

© Kenneth M. Anderson, 2016

(Goals

* Introduce the Actor Model of Concurrency
* isolation, message passing, message patterns
* Present examples from our textbook as well as from

» “Seven Concurrency Models in Seven Weeks” by Paul Butcher

© Kenneth M. Anderson, 2016

https://pragprog.com/book/pb7con/seven-concurrency-models-in-seven-weeks

=lixir: Types related to the Actor Model

* Elixir provides a wide range of types

 Value Types: integers, floats, atoms (like symbols in Ruby; keywords in
Clojure); ranges (5..15), regular expressions and strings (aka binaries)

* Boolean values: true, false, nil

* In boolean contexts, only false and nil evaluate to false; everything else
evaluates to true

- But system types are related to the Actor model:
 pids: a “process id”; not a Unix process, an Elixir process

- the function self will return the pid of the current process

- refs: a globally unique id

© Kenneth M. Anderson, 2016

Collection Types

* Elixir has the following collection types
* Tuples: an ordered collection of values
- {1, :0k, “hello” } — you can use tuples in pattern matching
» We will use tuples to pass messages between actors
 Lists — a linked data structure with a head and a talil
 the head contains a value; the tail is another list; a list can be empty
- Maps — a collection of key-value pairs

« %{ key => value, key => value }

© Kenneth M. Anderson, 2016

Actors

* Elixir makes use of a novel approach to concurrency, pioneered by Erlang,
called the Actor model

* In this model, actors are independent entities that run in parallel
* Actors encapsulate state that can change over time
 but that state is not shared with any other actor
 As a result, there can be no race conditions
« Actors communicate by sending messages to one another
« An actor will process its messages sequentially
- Concurrency happens because many actors can run in parallel
 but each actor is itself a sequential program

- an abstraction with which developers are comfortable

© Kenneth M. Anderson, 2016

Processes

* Actors are also called “processes”
* In most programming languages/operating systems
* processes are heavyweight entities

* In Elixir, a process is very lightweight in terms of resource consumption
and start-up costs; lighter weight even than threads

* Elixir programs might launch thousands of processes all running concurrently

- and without the programmer having to create thread pools or manage
concurrency explicitly (the Erlang virtual machine does that for you)

* Instead, Elixir programs make sure the right processes get started and then
work is performed by passing messages to/between them

© Kenneth M. Anderson, 2016

Actor Architecture In

—liXir

Elixir

- | Process

Operating System Process

Elixir

T

= | Process

Elixir Elixir

T

- | Process - | Process

1 1

Scheduler Scheduler Scheduler Scheduler
Thread Thread Thread Thread
Core Core Core Core

Machine

© Kenneth M. Anderson, 2016

Messages and Mailboxes

- Messages Iin Elixir are asynchronous

* When you send a message to an actor, the message is placed instantly
(actually copied) in the actor’s mailbox; the calling actor does not block

- Mailboxes in Elixir are queues
 Actors perform work in response to messages
- When an actor is ready, it pulls a message from its mailbox
 and responds to it, possibly sending other messages in response
- It then processes the next message, until the mailbox is empty

- at that point, it blocks waiting for a new message to arrive

© Kenneth M. Anderson, 2016

Actor Creation: spawn and spawn_link

- An actor is created by using the spawn function or the spawn 1ink function
- We will discuss spawn 1link later in this lecture
- spawn takes a function and returns a “process identifier”, aka a pid
« The function passed to spawn takes no arguments and
* its structure is expected to be an infinite loop
- at the start of the loop, a receive statement is specified
» this causes the actor to block until a message arrives in its mailbox

- The body of the receive statement specifies the messages that the
actor responds to

* once a message is handled, the actor loops, executing the receive
statement again, thus blocking until the next message arrives

© Kenneth M. Anderson, 2016

Simple Example (1)

one_message = fn () -> DEMO: simplei.exs and
receive do simple2.exs
{:hello} -> IO0.puts(“HI!”)

end

end

actor = spawn(one_message)
send(actor, {:hello})

- This example creates an actor that can only respond to a single message.
That message MUST be the tuple { :hello}. Any other message is ignored

- When the message { :hello} arrives, the actor prints out “HI!” and then
the function of the actor returns. That is interpreted as a “normal” exit,
similar to having the run () method of a Java thread return.

* Note: you can still send messages to the pid that was returned, those

messages are simply ignored
© Kenneth M. Anderson, 2016 10

Simple Example (2)

 To create a version of our actor that stays alive and can always respond to
{:hello} messages, we need to use a named function inside of a module

defmodule HiThere do
def hello do

receive do
{:hello} ->I0.puts(“HI!") |€¢———————————raceive block

end

hello [¢&——+————————infinite loop
end

end

actor = spawn(HiThere, :hello, [])¢—————sSpawn/3
send(actor, {:hello}) => “HI!?”
send(actor, {:hello}) => “HI!”

DEMO: simple3.exs

© Kenneth M. Anderson, 2016 11

| ots of Processes

- We mentioned that Elixir processes are lightweight
- What does that mean in practice?
* It means you can create LOTS of Elixir processes and it will NOT tax your
machine; for instance, on my machine, this code creates 10,000 Elixir
processes in 0.4 seconds!

defmodule Lots do DEMO: lots.exs
def loop do
receive do
{:hello} -> "HI!"
end
loop
end

end
pids = Enum.map(1l..10_000, &(spawn(Lots, :loop, [])))

© Kenneth M. Anderson, 2016 12

More Advanced

defmodule Chain do
def counter(next pid) do
receive do
n ->
send next pid, n + 1
end
end

def create processes(n) do

Example (0g. 191-192 of textbook)

last = Enum.reduce 1..n, self,

fn (_,send to) ->

DEMO: chain.exs

spawn(Chain, :counter, [send to])

end

send last, O # start the count by sending a zero to the last process

receive do # and wait for the result to come back to us
final answer when is integer(final answer) ->
"Result is #{inspect(final answer)}"

end
end

def run(n) do

I0.puts inspect :timer.tc(Chain, :create processes, [n])

end
end

© Kenneth M. Anderson, 2016

13

More Advanced Message Passing

e defmodule Talker do
def loop do

)

. receive do

. {:greet, name} -> IO.puts("Hello #{name}")

. {:praise, name} -> IO0.puts("#{name}, you're amazing!")
. {:celebrate, name, age} —> 10.puts(“HB #{name}. #{age} years old!"
. end

. loop

« end DEMO: talker.exs

e end

* pid = spawn (Talker, :loop, [])

e send (pid, {:greet, "Ken"})

e send (pid, {:praise, "Lilja"})

e send (pid, {:celebrate, "Miles", 42})

e :timer.sleep(1000) # allow responses to be generated

© Kenneth M. Anderson, 2016

14

Discussion (l)

« The actor specifies what messages it can process with receive

- Each message uses pattern matching specifying a literal atom (:praise) and
a variable that then matched whatever was sent with the rest of the

message

- {:praise, name} matc
then binds name to t

» that binding can t
e IO.puts ("#{

nes all 2-tuples that start with the :praise atom and
ne second value

nen be used in the message handler

name}, you're amazing!”)

« The call to receive blocks the actor until there is a message to process

- The actor defines a single function: 1oop; 1oop is seemingly implemented as

an infinite recursive loop

because it calls 1oop after it calls receive

* however, tail call elimination implements this with a goto

* it’'s a loop not a recursive call

© Kenneth M. Anderson, 2016 15

Discussion (l1)

* The rest of the code is used to create the actor and send messages to it

* since the message sends are asynchronous, this code ends with a call
to :timer.sleep (actually an Erlang function) to allow time for the messages
to be received

- The call to spawn, returns a process id that allows us to send messages to
the actor with the function send. send takes a pid and a tuple, adds the tuple
to the actor’s mailbox and returns immediately

© Kenneth M. Anderson, 2016 16

Linking Actors

 We can establish better interactions with our actors if we link them

* Linked actors get notified if one of them goes down
* by either exiting normally or crashing

» To receive this notification, we have to tell the system to “trap the exit” of
an actor; it then sends us a message in the form: {:EXIT, pid, reason} when
an actor goes down but ONLY if we start the process using spawn 1link

- We can modify our previous example to more cleanly shutdown by
Implementing another message

« {:shutdown} -> exit(:normal)

- We then call Process.flag(:trap_exit, true) in our main program, change it to
send the shutdown message, and then wait for the system generated
notification that the Talker actor shutdown. DEMO: talker2.exs

© Kenneth M. Anderson, 2016

17

Maintaining State

- To maintain state in an actor, we can use pattern matching and recursion

e defmodule Counter do
e def loop (count) do
e recelve do
e { :next} ->
e IO.puts (“"Current count: #{count}”)
e loop (count + 1)

e end
e end
e end
e counter = spawn (Counter, :loop, [11])
e send (counter, {:next}) => Current count: 1
e send (counter, {:next}) => Current count: 2

DEMO: counteri.exs

© Kenneth M. Anderson, 2016

18

Hiding Messages

* You can add functions to your actor to hide the message passing from the
calling code

e def start (count) do
e spawn (Counter, :loop, [count])
e end
e def next (counter) do
e send (counter, {:next})
e end

 These functions can then be called instead

e counter = Counter.start (23)
e Counter.next (counter) => Current count: 23
e Counter.next (counter) => Current count: 24

DEMO: counter2.exs

© Kenneth M. Anderson, 2016

Sidirectional Communication

- While asynchronous messages are nice

° 1
t
t

nere are times when we will want to ask an actor to do something and
nen wait for a reply from that actor to receive a value or confirmation that

ne work has been performed

 To do that, the calling actor (or main program) needs to

» generate a unique reference

- call send with a message that includes its pid (obtained via self)

- wait for a message that includes its ref and includes the response value

« Let’s look at a modified version of count that returns the actual count rather
than print it out

© Kenneth M. Anderson, 2016

Recelving the Message In the Actor

- We update our actor to expect the pid of the caller and the unique ref

e def loop (count) do
e recelve do
e { :next, sender, ref} ->
e send (sender, {:0k, ref, count})
e loop (count + 1)
e end
e end

- We now expect our incoming message to contain the sender’s pid and a
unique ref. The :next atom still provides a unique “name” for the message

« We send the current count back to the caller and pass back its ref too

© Kenneth M. Anderson, 2016 21

Receiving the return value in the Caller

* The caller’s code has to change as well

e def next (counter) do
* ref = make ref ()
e send (counter, {:next, self, ref})
e recelve do
e {:0k, "ref, count} -> count
e end
e end

* In this function, we call make_ref() to get a unique reference. We then send
the :next message to the actor. We then block on a call to receive, waiting for

the response.

* The response’s ref must match the previous value of ref (i.e. Aref) and then
binds the return value to the count variable which is then returned

DEMO: counter3.exs

© Kenneth M. Anderson, 2016

22

Naming Actors

* You can associate names (atoms) with process ids, so you can refer to an
actor symbolically

e Process.register(pid, :counter)

- this call takes a pid returned by spawn or spawn_link and associates
it with the : counter atom

* Now, when sending messages to that actor, you can use the atom

e send(:counter, {:next, self, ref})

DEMO: counter4.exs

© Kenneth M. Anderson, 2016 23

Reminder: Actors run In Parallel

* Here's a different implementation of Parallel.map

e defmodule Parallel do
e def map(collection, fun) do

e parent = self ()
e processes = Enum.map(collection, fn (e)
* spawn link (fn () —>
* send (parent, {self (), fun. (e)})
e end)
e end)
e Enum.map (processes, fn(pid) ->

e recelve do
e {"pid, result} -> result
e end
e end)
e end
e end

© Kenneth M. Anderson, 2016

—>

24

Parallel.map In action

Take a PID of the calling process, a collection, and a function
parent = self() 11, 2, 3, 4] add_one = fn(x) -> x + 1 end;
Transform it into a collection of pids of actors

[#PID<0.57.0>, #P1D<0.58.0>, #PID<0.59.0>, #P|D<0.60.0>]

where each actor is set-up to take the
original value, pass it to the function,
and return it back to the calling process

send(parent, {self(), fun.(e)})
send(parent, {#PID<0.57.0>, add_one.(1)})

After the parent launches these processes, it then uses Enum.map
to wait for the messages from each process

© Kenneth M. Anderson, 2016 25

Using Parallel

* slow double = fn(x) -> :timer.sleep(1000); x * 2 end
* :timer.tc(fn() -> Enum.map([(1l, 2, 3, 4, 5, o, 7, 8, 9, 10], slow double) end)
* :timer.tc(fn() -> Parallel.map([1l, 2, 3, 4, 5, 6, 7, 8, 9, 10], slow double) end)

On my machine, the first call to :timer.tc returned

e {10010165, [2, 4, o, 8, 10, 12, 14, 1o, 18, 20]} <= about 10 seconds

The second call returned

e {10010906, [2, 4, o, 8, 10, 12, 14, 1o, 18, 20]} <= about 1 second

One process got launched per element of the input collection

* they all waited one second, and then returned their result.

In the first call to :timer.tc, the delay of one second occurred ten times
sequentially; and so the entire call to Enum.map took 10 seconds

DEMO: parallel.exs

© Kenneth M. Anderson, 2016 26

Summary

* We have had a brief introduction to the Actor model
* multiple actors run in parallel
* each has its own mailbox and processes messages sequentially
* to perform work, actors send asynchronous messages to each other
* if we need actors to wait for a response

« we can do that with refs and calls to receive

© Kenneth M. Anderson, 2016

27

