
© Kenneth M. Anderson, 2016

User Stories & Agile Planning

CSCI 5828: Foundations of Software Engineering

Lecture 08 — 09/15/2016

1

© Kenneth M. Anderson, 2016

Goals

• Present an introduction to the topic of user stories

• concepts and terminology

• benefits and limitations

• Present an introduction to iteration planning

• Estimating User Stories

• Planning a Release

• Planning an Iteration

• Measuring and Monitoring Velocity

2

© Kenneth M. Anderson, 2016

Credit Where Credit is Due

• This material is drawn from a textbook I used for this class in Fall 2014

• “User Stories Applied” by Mike Cohn 
Publisher: Addison-Wesley/Pearson Education 
ISBN-13: 978-0-321-20568-1

• It’s a great book for going in depth on the topic of user stories

3

http://www.amazon.com/User-Stories-Applied-Software-Development/dp/0321205685/

© Kenneth M. Anderson, 2016

User Stories

• User stories are a means to capture requirements during the analysis phase
of software development

• whenever that phase occurs during your particular software life cycle

• (in agile life cycles, analysis can happen at any time)

• They are a lightweight mechanism for spreading decision making out across
a software development project with respect to individual features

• We know we need feature X but we don’t know much about it?

• name it and put it in a user story

• We learned a little bit more about feature X today?

• add a short note to the user story (or even better, write a test)

4

© Kenneth M. Anderson, 2016

Background (I)

• Agile life cycles evolved the notion of a user story because capturing software
requirements is a communication problem

• Those who want new software need to communicate what they need to
those who will build it

• Many stakeholders will provide input to the process

• customers, users, and domain experts

• business and marketing

• developers

5

© Kenneth M. Anderson, 2016

Background (II)

• If any group dominates this discussion, the whole project suffers

• if business dominates, it may mandate features and schedules with little
regard to feasibility

• if the developers dominate, a focus on technology may obscure business
needs and the developers may miss important requirements

• Furthermore, the goal is to understand the user’s problem and ensure the
software meets their needs

• both business and developers will move on, the users have to live with the
developed software day in and day out

6

© Kenneth M. Anderson, 2016

Background (III)

• Furthermore, everything about the project is in flux

• We still don’t understand exactly what the user needs

• Their domain is complex; they are experts, we are novices

• We’ll get things wrong and need to be corrected

• We’ll get to a certain point and then they will remember things that they
forgot to tell us

• We’ll show them prototypes and they’ll come up with new ideas

• We don’t have enough information to make accurate estimates

• what we thought would be easy, turns out to be very complex

7

© Kenneth M. Anderson, 2016

Background (IV)

• But, we must make progress!

• And, so we have to make decisions based on the information we have

• We set our scope small (one feature, for instance) and our development life
cycle short (one week, for instance)

• and then we show the customer what we have

• By then, new information will be available and we’ll have feedback on the
work we’ve done so far

• With that input, we identify the new scope and start a new iteration

• We thus spread out the decision making

• It’s not “everything up front” but “a little at a time”

8

© Kenneth M. Anderson, 2016

User Stories: The Basics (I)

• That’s where User stories come in; they describe functionality that will be
valuable to the user and/or customer

• Note the distinction:

• user: the people who actually use the produced software in their work

• customer: a person, not necessarily a user, who is responsible for

purchasing the software for a set of users

• Sometimes they are one and the same, but not always

• Note also the use of the word “valuable”

• We do NOT implement a feature because it is “cool”

• we implement features to provide value to users

9

© Kenneth M. Anderson, 2016

User Stories: The Basics (II)

• User stories consist of

• a short written description of a feature used for planning and a reminder

• conversations about the feature used to flesh out its details

• software tests that convey details about functionality and help us
determine when the story is completely implemented

• Ron Jeffries calls these three aspects Card, Conversation, and Confirmation

• He says “card” because traditionally users stories are written on index
cards and put up on a wall in the shared space of a development project

• Using index cards forces you to keep the story brief!

10

© Kenneth M. Anderson, 2016

User Stories: The Basics (III)

• Example users stories for a website that helps a person’s job search

• A user can post a resume to the website

• A user can search for jobs

• A company can post new job openings

• Users can restrict access to their resume

• Important:

• User stores are written so that customers value them

• This helps maintain a customer perspective within the development team

11

© Kenneth M. Anderson, 2016

User Stories: The Basics (IV)

• So, is this a good user story?

• The software will make use of a bloom filter to determine if a desired data
element is in our data set before we perform disk I/O to retrieve it

12

© Kenneth M. Anderson, 2016

Not Really

• Is your customer a distributed systems researcher?

• Then, yes, maybe, this might be a good user story

• (as it is for Cassandra, a popular NoSQL database)

• But, in general, technical details like this do NOT make good user stories

• These details may change

• we need to switch from this framework to this other framework to be
compatible on a wider range of devices

• while the fundamental user story does not change

• Users need to access schedule information

13

© Kenneth M. Anderson, 2016

How do we track details?

• The users stories for an application can often be written simply at a high level
of abstraction (known as epic user stories or epics for short); for example:

• A user can search for jobs

• A company can post job openings

• But, you need to specify details at a lower level of abstraction

• how do we do that?

• Three places

• in the conversations around a user story; we will converge on details

• more users stories!

• as tasks when we decide to implement user stories (discussed below)

14

© Kenneth M. Anderson, 2016

More users stories

• You can take an epic like “A user can search for a job” and split it into new
stories

• A user can search for a job by attributes (such as …)

• A user can view information about a job found by a search

• A user can view profile information about a company offering a job

• On the epic, you note that it’s covered by these other stories and then you go
work on those stories

• The challenge: getting the balance right

• We want to resist the temptation to document everything on a user story

• Our conversations are the key element where details live (since the
details WILL change while the user story remains the same)

15

© Kenneth M. Anderson, 2016

Tests are integral to User Stories

• At the start of a user story, the “tests” might exist as a set of customer
expectations written on the back of a card

• Try feature with an empty job description

• Try feature with a really long job description

• etc.

• In this form, the tests can come and go as we learn more about the feature

• As this particular user story is worked on and implemented

• these expectations are transformed into unit tests and integration tests
that tell us when the feature is completely implemented

• We’re not done until all tests have passed!

16

© Kenneth M. Anderson, 2016

Benefits

• User stories provide the following benefits

• They emphasize verbal rather than written communication

• They are comprehensible by customers and developers

• They are the right size for planning

• They encourage and “work” for iterative development

• They encourage deferring details until you have the best understanding of
what you really need to implement a feature

17

© Kenneth M. Anderson, 2016

Tool Support

• Systems, like Trello, can provide teams with support for tracking the status of
user stories

18

Here’s a Trello board with a mix of stories and tasks

© Kenneth M. Anderson, 2016

Overview of a Process

• A software development process driven by user stories feels very different
than traditional life cycles; for instance, customers are included throughout
the process (they do not disappear on you!)

• to get a project started, a story writing workshop is held to brainstorm
what features are valuable to the customer for an initial release

• developers will assign initial estimates to each story using “points”

• customers and developers set an iteration length (e.g. 2 weeks)

• developers then determine their velocity (how much work they can get
done in a single iteration)

• customers assign priorities to the stories

• iterations are formed by grouping stories by velocity based on their
priorities and estimates

19

© Kenneth M. Anderson, 2016

Midcourse Adjustments (I)

• This process is tunable (i.e. customizable)

• It has to be because the developers will make mistakes with respect to

• the points they assigned to a user story

• the velocity (number of points per iteration) they chose

• At the end of each iteration

• they will know more about their true velocity and

• they will know more about the skills of their team

• and thus have different opinions about the estimates that should be
assigned to each user story

20

© Kenneth M. Anderson, 2016

Midcourse Adjustments (II)

• With this new information, you can

• return to the remaining groups of user stories (i.e. iterations) and

• rebalance them

• stories will get new estimates

• stories may get new priorities (low to high and vice versa)

• new stories may get added

• existing stories may get removed

• “Our user doesn’t care about this anymore”

• existing stories may get moved forward or pushed backward

21

© Kenneth M. Anderson, 2016

Releases and Iterations

• An agile life cycle is thus broken down into planning releases and planning
iterations

• A release is some major group of functionality that can be put into
production (used by its users)

• A release is composed of many iterations which contain users stories that
are going to be implemented during that iteration

• Iterations always last the same amount of time and produce a working system
that can be reviewed by the customers

• Customers provide feedback and midcourse adjustments are made

• The next iteration begins

• Reminder: A user story is complete when it passes its user-specified tests

22

© Kenneth M. Anderson, 2016

Estimating User Stories

• Developers need to assign “points” to a story to indicate how long it will take
to implement

• Our user/customer assigns priorities to stories, not estimates

• There are a number of desirable properties for this approach

• it allows us to change our minds about an estimate when new info arrives

• works for both epic stories as well as smaller stories

• doesn’t take a lot of time; we want to spend our time developing

• provides useful information about our progress and work remaining

• is tolerant of imprecision in estimates

• can be used to plan releases

23

© Kenneth M. Anderson, 2016

Story Points

• A point is a unit that can be defined by the development team

• It might represent “eight hours of uninterrupted work” for one team

• It might represent “forty hours of uninterrupted work” for another

• Some use points to represent complexity (lots of points == complex)

• Think of one point as “one ideal work day”

• where ideal means: a day with no interruptions and the developer can be
maximally productive on the task

• Two benefits with this approach

• it avoids getting too specific: “this story will take 39.5 hours”

• it gives people confidence: “Yeah, that story is about two days of work”

24

© Kenneth M. Anderson, 2016

Estimates belong to the Team

• It is important to have the team create the estimates for each story

• The success of the project is attributed to the team not to individuals

• to establish this perspective: make estimates together

• if you get it wrong, it’s the team that failed, not one individual

• In addition, when creating/estimating stories, it may not be clear who will be
assigned to this particular story

• therefore, the team works to create the estimate and then individuals
assigned to the story later know

• they had a voice in creating the estimate they are working against

• the team is responsible if the estimate is wrong

25

© Kenneth M. Anderson, 2016

The Process of Estimation

• One way to do estimation was developed by Barry Boehm

• the Wideband Delphi approach

• Gather the development team and the customer/user(s)

• Bring the stories that need estimates and blank index cards

• Distribute the cards to the development team

• Loop until all stories have estimates
• Read a story out-loud

• Loop until estimates have converged

• Engage in Q&A with customer/users about that story

• Each developer writes an estimate; when ready, show all estimates

• Developers discuss differences in estimates; raising questions/issues

• New stories may be created due to this discussion

26

© Kenneth M. Anderson, 2016

Triangulate

• After a set of stories have received estimates, developers need to review
them and see if they are being consistent

• Group the stories by number of points and discuss

• For example, are these two point stories really twice as small as the
four points stories?

• If yes, continue estimating

• If not, change the estimates

• This helps the team achieve consistency across the entire set of user stories

• Later in a development project, the need for triangulation may go down as
the team becomes more confident and knowledgable of their abilities

27

© Kenneth M. Anderson, 2016

Velocity

• The term velocity is defined as “number of story points completed per
iteration”

• Agile software life cycles recommend that

• before the first iteration begins, the team makes a guess at what their
velocity will be

• if a point means “ideal work day”, you can start with this formula

• number of team members x number of days in iteration

• then, your velocity for iteration N is the actual number of points
completed for iteration N-1

• if you completed 32 points in the previous iteration, your velocity for
planning the next iteration is 32.

28

© Kenneth M. Anderson, 2016

Release Planning

• A release is a version of the system under development that is going to be
deployed and put into production use

• Release planning in software development involves having a release
roadmap in which the next several releases have been identified

• and the functionality for each release has been specified at a high level

• With a release roadmap, you need to engage in release planning

• users/customers need to assign priorities to estimated user stories

• all stakeholders need to work together to identify the length of an iteration

• Issues include dealing with risk and determining velocity

29

© Kenneth M. Anderson, 2016

Assigning Priorities

• One prioritization scheme that may be better than the typical  
“low/medium/high” approach

• Must have

• Should have

• Could have

• Won’t have (for this release)

• This approach divides stories into clear buckets that can then be used to
assign stories to iterations within the release

• If a customer can’t assign a priority to a user story, this (typically) indicates
that the story needs to be split until clear priorities can be assigned

30

© Kenneth M. Anderson, 2016

Risky Stories

• The issue here is what approach should agile projects take

• tackle risky stories first

• or go after “low hanging fruit”

• Agile life cycles like to go after low-hanging fruit

• high-value functionality that is straightforward to implement

• This allows time for more information to be gathered about high-risk stories

• and this additional information may reduce the risk associated with them

• I think you need to balance this with the common issue of “problem
avoidance”; make sure you’re clear on what the risks are => such information
may produce action items that can reduce the risk and make it feasible

31

© Kenneth M. Anderson, 2016

Iteration Length and Expected Duration

• Iteration length is typically from one week to four weeks

• Agile life cycles recommend selecting shorter lengths to increase the
feedback loop with the customer

• The important thing is once the length is selected: DON’T CHANGE IT!

• Your team needs to settle into a comfortable development pace

• Arbitrary changes to the iteration length will hinder that goal

• Once you have an iteration length, an initial velocity, and a set of prioritized,
estimated user stories, you can make initial “ballpark” predictions about how
long it will take to create a release

• round_up(number of points / velocity) == number of iterations

• number_of_iterations * iteration_length == number of days until release

32

© Kenneth M. Anderson, 2016

Velocity, revisited

• Previously we suggested

• number of team members x number of days in iteration

• is a good formula for picking an initial velocity

• However, you need to take into account that “number of days” means
“number of IDEAL days”

• You need to include a conversion factor between an IDEAL day and an
ACTUAL day

• An actual day won’t be eight hours of uninterrupted work due to
meetings, interruptions, illness, turnover, etc.

• Ideal velocity for six people with two week iteration (10 business days): 60

• Converting to an ACTUAL day: 6 x 10 x .5 = 30; 6 x 10 x .25 = 15!

33

© Kenneth M. Anderson, 2016

Iteration Planning (I)

• The points-based approach to release planning works well

• It provides enough planning to make progress on the project

• It lacks enough detail to avoid giving a false sense of accuracy

• People will be aware that there can be errors made in the estimates and
can react once new information is available to make the errors clear

• In iteration planning, you need to engage in more detail to help create
accurate work plans over the days allocated to an iteration

• An iteration planning meeting occurs “between iterations”

• If it occurs “during” an iteration, then you need to include the time
spent on it in your other estimates (perhaps by adjusting your velocity
down by a point or two to account for it)

34

© Kenneth M. Anderson, 2016

Iteration Planning (II)

• All developers and the customer/user must be present for an iteration
planning meeting

• The developers are required to help identify tasks and make estimates

• The customer/user is required to answer questions about the stories

• The process involves

• For each story in the iteration

• engage in Q&A with customer/user about the story

• convert story into tasks that need to be completed to finish the story

• assign each task to a single developer

• Each developer then estimates each assigned task; performs sanity check

• if a developer is overloaded, rebalancing or more planning is needed

35

© Kenneth M. Anderson, 2016

Tasks

• Task identification takes a story that is written in a customer perspective and
transforms it into a set of steps that are written from a developer’s
perspective (finally!)

• “A job seeker can search for jobs” might be transformed into

• Code basic search interface

• Write controller to handle submissions from search interface and perform
the search

• Ensure that controller can access the database correctly

• Write a view that will display the results

• Working on this step will require “design thinking” either to come up with an
initial design for a system or to integrate this feature into the existing design

36

© Kenneth M. Anderson, 2016

Task Estimation

• In release planning, we worked with “ideal days”

• With task planning, we work with “ideal hours”

• Once a developer has their assigned tasks, they estimate the number of
hours it will take to complete each one

• They then add those hours up to perform a sanity check

• They can also include a factor to transform ideal hours into actual hours

• Sanity Check

• Compare number of hours with the length of the iteration

• If the number of hours to complete the tasks is greater than the number of
available hours, then rebalancing is needed

• A team perspective is needed to make this successful

37

© Kenneth M. Anderson, 2016

Measuring and Monitoring Velocity

• Once points/priorities have been assigned and releases and iterations have
been planned, the most important metric for an agile life cycle is velocity

• velocity tracks how much work is completed in an iteration

• before the iteration it is a “guess”

• a guess that we have increased confidence in over time

• after an iteration it is an actual metric that can be used in assessment

• How do we measure velocity?

• The number of points associated with completed stories

• Incomplete stories are not included (velocity is an integer not a float)

• With velocity measured, we can chart our progress in a variety of ways

38

© Kenneth M. Anderson, 2016

Iteration Burndown Charts

39

6 1 2 3 4 5

140

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Iterations

St
or

y
Po

in
ts

120

100

70

90

60

Important: This plots the remaining story points;
the y value heads towards zero as we complete stories

© Kenneth M. Anderson, 2016

Daily Burndown Charts

40

14 1 2 3 4 5 6 7 8 9 10 11 12 13

400

0

50

100

150

200

250

300

350

Days

H
ou

rs

Important: This plots the remaining task points (i.e. hours);
the y value heads towards zero as we complete tasks

© Kenneth M. Anderson, 2016

Summary

• In executing an agile life cycle, you must

• estimate your stories

• plan your releases

• plan your iterations

• measure your progress

• We have looked at various recommendations for performing these tasks

• using “ideal days” (stories) and “idea hours” (tasks) for estimates and then

using a conversion factor to get to “actual days” and “actual hours”

• saw example charts to measure actual progress

• Agile life cycles are brutal; if you fall behind, you’ll know it fast

• the good news is that you’ll deal with schedule delays quickly and

hopefully before they become a problem

41

