Introduction to Software Life Cycles

CSCI 5828: Foundations of Software Engineering
Lecture 06 — 09/08/2016

© Kenneth M. Anderson, 2016



(Goals

* Present an introduction to the topic of software life cycles
» concepts and terminology
* benefits and limitations

* examples

© Kenneth M. Anderson, 2016



Background (l)

* In software engineering, “process is king”

* That is, the process by which we do things is of utmost importance
* We want our activities to be coordinated and planned

* that is, “engineered”
* Why?

- A high quality process increases our ability to create a high quality product

© Kenneth M. Anderson, 2016



Background (l1)

* process

* a series of steps that people follow involving activities and resources
that produce an intended output of some kind

* Activities are arranged into a workflow with
- sequences of steps (supports basic work practice)
- branches (supports conditional behavior)
 loops (supports iteration)
- Each activity
* has a set of inputs and/or entry criteria
- and may produce an output that is used in a subsequent step

© Kenneth M. Anderson, 2016



Background (lI)

* A process typically has a set of guiding principles about why you should follow
its particular approach

- it should be able to articulate the goals of each of its activities
« A process uses resources, subject to a set of constraints
 two primary constraints: schedule (time) & budget (money)

* Designers of software life cycles created their particular life cycle to help
software engineers achieve their goals while meeting their constraints

- Unfortunately, few life cycles offer guidance on what to do when a limit has
been reached

* i.e. you’ve run out of time or you’ve run out of money

 Agile is different, as we shall see

© Kenneth M. Anderson, 2016



Sackground (IV)

- Why bother with defining and following a life cycle for software development?

- Impose consistency and structure on the work practice of an organization
» especially across project teams in a single organization
* Or across two or more projects performed by the same team
 provide a vehicle for capturing/measuring performance to
 improve future performance by a particular team
» to provide evidence needed to change/improve the process

- To answer the question: What do | do today?®

© Kenneth M. Anderson, 2016



Background (V)

- Similarities and differences with manufacturing processes
- Software life cycles are similar to manufacturing processes
* You need to design the process to produce a high quality product
- You need to monitor the process and look for ways to improve it

- The process organizes the steps to ensure the product can be produced
within budgetary and scheduling constraints

- BUT

« in manufacturing, design is “short”, production is “long” and most of your
costs are tied up in production; use varies from instant to long lived

* in software, design is “long” (and difficult), production is instantaneous (it’s
trivial to create a new copy of the final system) and use can be “forever”

© Kenneth M. Anderson, 2016



Typical Steps in a Software Life Cycle

 Feasibility; Development of a Business Plan

* Requirements Analysis and Specification

* Design

* Implementation and Integration

« Operation and Maintenance

* Pervasive Concerns
- Testing
» Change Management
 Configuration Management

 Build Management and Continuous Integration

© Kenneth M. Anderson, 2016



Heads-Up

* In the following slides (10-29), | adopt a traditional perspective of SE
* one that is consistent with the “waterfall” model of development
- one that assumes a development context with many large stakeholders

* one that assumes “requirements and design up front”

» We will revisit and unpack this material as we present/investigate agile life
cycles more deeply

A lot of this material is “musty” from a modern software engineering
perspective but it is important to understand the changes that Agile life
cycles made to the more traditional perspective of SE

© Kenneth M. Anderson, 2016



Feasibility and Business Plan

* In some (most?) development contexts
* an idea for a new software system does NOT lead straight to requirements

* instead, just enough of the proposed system is defined/discussed to
assess

* whether it is technically feasible to develop
- whether there are enough resources to develop it

» whether it will produce enough revenue to justify the costs of
development

* Many proposed systems fail to get past this stage

© Kenneth M. Anderson, 2016



Requirements Analysis and Specification

* Problem Definition = » specifications may be
Requirements Specification ambiguous, inconsistent,
Incomplete
» determine exactly what client o
- Validation

wants and identify constraints

« extensive reviews to check that

« develop a contract with client _ _ _
requirements satisfy client needs

- Specify the product’s task o _
* look for ambiguity, consistency,

explicitly |
Incompleteness
* Difficulties
» develop system/acceptance test
+ client asks for wrong product plan

- client is computer/software
lliterate

© Kenneth M. Anderson, 2016

11



Design

- Requirements Specification =

Design

- develop architectural design
(system structure)

- decompose software into
modules with module interfaces

- develop detailed design (module
specifications)

- select algorithms and data
structures

- maintain record of design
decisions

* Difficulties

* miscommunication between
module designers

- design may be inconsistent,
Incomplete, ambiguous

* Verification

- extensive design reviews
(inspections) to determine that
design conforms to requirements

 check module interactions

- develop integration test plan

© Kenneth M. Anderson, 2016

12



Implementation and Integration

* Design = Implementation - Verification and Testing

« code reviews to determine that
implementation conforms to
requirements and design

- implement modules and verify
they meet their specifications

- combine modules according to

architectural design - develop unit/module test plan:

focus on individual module
. Difficulties functionality

» module interaction errors * develop integration test plan:
focus on module interfaces

- order of integration has a critical

influence on product quality * develop system test plan: focus
on requirements and determine

whether product as a whole
functions correctly

© Kenneth M. Anderson, 2016 13



Operation and Maintenance

* Operation = Change * Verification and Testing

* review to determine that change
IS made correctly and all
documentation updated

- maintain software after (and
during) user operation

« determine whether product as a

whole still functions correctly * test to determine that change is

correctly implemented

- Difficulties .
* test to determine that no
- design not extensible inadvertent changes were made
to compromise system
* lack of up-to-date functionality

documentation

* personnel turnover

© Kenneth M. Anderson, 2016 14



DISCUSSION

* You will see the previous five activities appear in almost every software life
cycle

» Within each of these major types of development activities, there will be
* lots of different sub-activities

Ul design, code reviews, refactoring, build management, configuration
management, deployment, testing, profiling, debugging, etc.

* meetings, e-mail, texting, IM, phone calls, etc. (i.e. coordination)

» change requests, identification of problems, resolution of ambiguities,
problem solving, etc.

» “controlled chaos”

© Kenneth M. Anderson, 2016 15



—xample Life Cycles

* One Anti Life Cycle
» “Code & Fix”
- Exemplars
- Waterfall
* Rapid Prototyping
* Incremental
« Spiral Model

* Rational Unified Process

© Kenneth M. Anderson, 2016

16



Code & Fix

Build First
Version

.

Modify until ¢ - - - -

Client 1s satistfied |,

I

© Kenneth M. Anderson, 2016

Operations Mode

1

Retirement

17



DISCUSSION

« Useful for small-scale, personal development
* Problems become apparent in any serious coding effort
* No process for things like versioning, testing, change management, etc.
* If you do any of these things, you are no longer doing “code and fix”
* Difficult to coordinate activities of multiple programmers
* Non-technical users cannot explain how the program should work

* Programmers do not know or understand user needs

© Kenneth M. Anderson, 2016

18



Watertall

e e e e Req. Change

Requirements x
Verify BN
I Design T I
Verify
I Implementation |________ L
Test —J

Operations

Retirement

© Kenneth M. Anderson, 2016



DISCUSSION

* Proposed in early 70s by Winston Royce
- as how NOT to run a software development project (!!!)
- Widely used (even today)
- Advantages
» Straightforward to Measure
» Possible to move between stages when the need occurs

» Experience applying steps in past projects can be used in estimating
duration of steps in future projects

* Produces software artifacts that can be re-used in other projects

© Kenneth M. Anderson, 2016

20



DISCUSSION

* The original waterfall model had disadvantages because it disallowed
iteration

* This made the process inflexible and monolithic

* Making estimates about how long the process would take was difficult
 Did not deal well with changing requirements
- Maintenance phase not handled well

- However, these are challenges that all life cycle models face

* The “waterfall with feedback” model was created in response

« Slide 19 shows the “with feedback” version

© Kenneth M. Anderson, 2016

21



Rapid Prototyping

e e e Req. Change

Rapid Prototype x

Verity N :

I Design I

Verity
T Implementation |, _______
Test —I
Operations
Retirement

© Kenneth M. Anderson, 2016



DISCUSSION

* Prototypes are used to develop requirements specifications
* Once regs. are known, waterfall is used
 Prototypes are discarded once design begins

* Prototypes should not be used as a basis for implementation. Prototyping
tools do not create production quality code

- In addition, customer needs to be “educated” about prototypes

- they need to know that prototypes are used just to answer requirements-
related questions

- otherwise, they get impatient!

© Kenneth M. Anderson, 2016

23



Incremental

Requirements

Verity

Arch. Design

Verify

For each build:

Perform detailed [*™ -
design, implement.

Test. Deliver.

=l

© Kenneth M. Anderson, 2016

Operations

l

Retirement

24



DISCUSSION

+ Used by Microsoft (at least when building Windows XP)
* Programs are built everyday by the build manager

* If a programmer checks in code that “breaks the build” they become
the new build manager!

* lterations are planned according to features
* e.g. features 1 and 2 are being worked on in iteration 1
- features 3 and 4 are in iteration 2, etc.
* This life cycle also specifies two critical roles

 product manager and program manager

* Note: the original link is no longer active; fortunately | saved a copy

© Kenneth M. Anderson, 2016

25


http://www.cs.colorado.edu/~kena/classes/5828/f14/supplemental-materials/productmanagementvsprogramm.pdf
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=25c92015-9172-4bc8-8f91-f901f8811aff

Spiral Model [Boehm, 1988]

Cumulative
cost

Progress

through
Determine steps Evaluate alternatives,
objectives, identify, resolve risks
alternatives,
constraints

Risk
Assessment

(OAC)

Concrete
Specification
OAC

Risk
Assessment

Abstract
Specifcation
OAC

Risk
Assessmente %
¢ e

Requirements Control

OAC

Risk
Control

Risk
Review Commit Control
artition ~
p Requirements Co
Plan .
Operation
Requirements

Abstract
Specificatio

Abstract Specification

Concrete
Specification

Requirements
Validation

Concrete Specification

Abstract Specification
Validation

Software

T Concrete
Plan next phases -.::::::::__ Development Plan

Specification Validation
and Verification

Develop, verify
next-level product

© Kenneth M. Anderson, 2016

26



DISCUSSION

- Similar to lterative Model, but:
- each iteration is driven by “risk management”
- Determine objectives and current status
* Identify Risks

* Develop plan to address highest risk items and proceed through
iteration

* Repeat

© Kenneth M. Anderson, 2016

27



Rational Unified

Process

PRODUCT CYCLE 1 CYCLE 2 CYCLE 3 CYCLEN
CYCLES
PHASES INCEPTION ELABORATION CONSTRUCTION TRANSITION
ITERATIONS itera11tion itere;tion iter;tion iterition itera5tion itera6tion iterll'a_ti10n itera:ltion
CORE Requirements Analysis Design Implementation Test
WORKFLOWS

© Kenneth M. Anderson, 2016

28



DISCUSSION

A variant of the waterfall model with all of the major steps

* It advocates the use of object-oriented analysis and design technigques
throughout

* Our “big three” concepts from Lecture 1 writ large
« Specification: objects and classes used in all phases

 Translation: objects and classes go from high level specs to extremely
detailed specs that can be translated directly to code

» some OO A&D tools will generate source code based on UML designs

- lteration: Product Cycles = Phase = lterations = Major Life Cycle Steps

- A step towards agile in that the activities are “fractal”

* You may find yourself performing implementation and testing during
project inception

© Kenneth M. Anderson, 2016

29



Summary

* Life cycles make software development
 predictable, repeatable, measurable, and efficient
- High-quality processes should lead to high-quality products
- at least it improves the odds of producing good software
- We've seen
* Typical stages in software life cycles

» Examples of traditional software life cycles

© Kenneth M. Anderson, 2016

30



Coming Up Next

* Lecture 7: Introduction to Agile Life Cycles

© Kenneth M. Anderson, 2016

31



