
© Kenneth M. Anderson, 2016

Introduction to Software Life Cycles

CSCI 5828: Foundations of Software Engineering

Lecture 06 — 09/08/2016

1

© Kenneth M. Anderson, 2016

Goals

• Present an introduction to the topic of software life cycles

• concepts and terminology

• benefits and limitations

• examples

2

© Kenneth M. Anderson, 2016

Background (I)

• In software engineering, “process is king”

• That is, the process by which we do things is of utmost importance

• We want our activities to be coordinated and planned

• that is, “engineered”

• Why?

• A high quality process increases our ability to create a high quality product

3

© Kenneth M. Anderson, 2016

Background (II)

• process

• a series of steps that people follow involving activities and resources
that produce an intended output of some kind

• Activities are arranged into a workflow with

• sequences of steps (supports basic work practice)

• branches (supports conditional behavior)

• loops (supports iteration)

• Each activity

• has a set of inputs and/or entry criteria

• and may produce an output that is used in a subsequent step

4

© Kenneth M. Anderson, 2016

Background (III)

• A process typically has a set of guiding principles about why you should follow
its particular approach

• it should be able to articulate the goals of each of its activities

• A process uses resources, subject to a set of constraints

• two primary constraints: schedule (time) & budget (money)

• Designers of software life cycles created their particular life cycle to help
software engineers achieve their goals while meeting their constraints

• Unfortunately, few life cycles offer guidance on what to do when a limit has
been reached

• i.e. you’ve run out of time or you’ve run out of money

• Agile is different, as we shall see

5

© Kenneth M. Anderson, 2016

Background (IV)

• Why bother with defining and following a life cycle for software development?

• Impose consistency and structure on the work practice of an organization

• especially across project teams in a single organization

• or across two or more projects performed by the same team

• provide a vehicle for capturing/measuring performance to

• improve future performance by a particular team

• to provide evidence needed to change/improve the process

• To answer the question: What do I do today?☺

6

© Kenneth M. Anderson, 2016

Background (V)

• Similarities and differences with manufacturing processes

• Software life cycles are similar to manufacturing processes

• You need to design the process to produce a high quality product

• You need to monitor the process and look for ways to improve it

• The process organizes the steps to ensure the product can be produced
within budgetary and scheduling constraints

• BUT

• in manufacturing, design is “short”, production is “long” and most of your
costs are tied up in production; use varies from instant to long lived

• in software, design is “long” (and difficult), production is instantaneous (it’s
trivial to create a new copy of the final system) and use can be “forever”

7

© Kenneth M. Anderson, 2016

Typical Steps in a Software Life Cycle

• Feasibility; Development of a Business Plan

• Requirements Analysis and Specification

• Design

• Implementation and Integration

• Operation and Maintenance

• Pervasive Concerns
• Testing

• Change Management

• Configuration Management

• Build Management and Continuous Integration

8

© Kenneth M. Anderson, 2016

Heads-Up

• In the following slides (10-29), I adopt a traditional perspective of SE

• one that is consistent with the “waterfall” model of development

• one that assumes a development context with many large stakeholders

• one that assumes “requirements and design up front”

• We will revisit and unpack this material as we present/investigate agile life
cycles more deeply

• A lot of this material is “musty” from a modern software engineering
perspective but it is important to understand the changes that Agile life
cycles made to the more traditional perspective of SE

9

© Kenneth M. Anderson, 2016

Feasibility and Business Plan

• In some (most?) development contexts

• an idea for a new software system does NOT lead straight to requirements

• instead, just enough of the proposed system is defined/discussed to
assess

• whether it is technically feasible to develop

• whether there are enough resources to develop it

• whether it will produce enough revenue to justify the costs of
development

• Many proposed systems fail to get past this stage

10

© Kenneth M. Anderson, 2016

Requirements Analysis and Specification

• Problem Definition ⇒
Requirements Specification

• determine exactly what client
wants and identify constraints

• develop a contract with client

• Specify the product’s task
explicitly

• Difficulties

• client asks for wrong product

• client is computer/software
illiterate

• specifications may be
ambiguous, inconsistent,
incomplete

• Validation

• extensive reviews to check that
requirements satisfy client needs

• look for ambiguity, consistency,
incompleteness

• develop system/acceptance test
plan

11

© Kenneth M. Anderson, 2016

Design

• Requirements Specification ⇒
Design

• develop architectural design
(system structure)

• decompose software into
modules with module interfaces

• develop detailed design (module
specifications)

• select algorithms and data
structures

• maintain record of design
decisions

• Difficulties

• miscommunication between
module designers

• design may be inconsistent,
incomplete, ambiguous

• Verification

• extensive design reviews
(inspections) to determine that
design conforms to requirements

• check module interactions

• develop integration test plan

12

© Kenneth M. Anderson, 2016

Implementation and Integration

• Design ⇒ Implementation

• implement modules and verify
they meet their specifications

• combine modules according to
architectural design

• Difficulties

• module interaction errors

• order of integration has a critical
influence on product quality

• Verification and Testing

• code reviews to determine that
implementation conforms to
requirements and design

• develop unit/module test plan:
focus on individual module
functionality

• develop integration test plan:
focus on module interfaces

• develop system test plan: focus
on requirements and determine
whether product as a whole
functions correctly

13

© Kenneth M. Anderson, 2016

Operation and Maintenance

• Operation ⇒ Change

• maintain software after (and
during) user operation

• determine whether product as a
whole still functions correctly

• Difficulties

• design not extensible

• lack of up-to-date
documentation

• personnel turnover

• Verification and Testing

• review to determine that change
is made correctly and all
documentation updated

• test to determine that change is
correctly implemented

• test to determine that no
inadvertent changes were made
to compromise system
functionality

14

© Kenneth M. Anderson, 2016

Discussion

• You will see the previous five activities appear in almost every software life
cycle

• Within each of these major types of development activities, there will be

• lots of different sub-activities

• UI design, code reviews, refactoring, build management, configuration
management, deployment, testing, profiling, debugging, etc.

• meetings, e-mail, texting, IM, phone calls, etc. (i.e. coordination)

• change requests, identification of problems, resolution of ambiguities,
problem solving, etc.

• “controlled chaos”

15

© Kenneth M. Anderson, 2016

Example Life Cycles

• One Anti Life Cycle

• “Code & Fix”

• Exemplars

• Waterfall

• Rapid Prototyping

• Incremental

• Spiral Model

• Rational Unified Process

16

© Kenneth M. Anderson, 2016

Code & Fix

17

Build First
Version

Retirement

Operations Mode

Modify until
Client is satisfied

© Kenneth M. Anderson, 2016

Discussion

18

• Useful for small-scale, personal development

• Problems become apparent in any serious coding effort

• No process for things like versioning, testing, change management, etc.

• If you do any of these things, you are no longer doing “code and fix”

• Difficult to coordinate activities of multiple programmers

• Non-technical users cannot explain how the program should work

• Programmers do not know or understand user needs

© Kenneth M. Anderson, 2016

Waterfall

19

Requirements!

Verify!

Retirement!

Operations!

Test!

Implementation!
Verify!

Design!

Req. Change!

© Kenneth M. Anderson, 2016

Discussion

20

• Proposed in early 70s by Winston Royce

• as how NOT to run a software development project (!!!)

• Widely used (even today)

• Advantages

• Straightforward to Measure

• Possible to move between stages when the need occurs

• Experience applying steps in past projects can be used in estimating
duration of steps in future projects

• Produces software artifacts that can be re-used in other projects

© Kenneth M. Anderson, 2016

Discussion

• The original waterfall model had disadvantages because it disallowed
iteration

• This made the process inflexible and monolithic

• Making estimates about how long the process would take was difficult

• Did not deal well with changing requirements

• Maintenance phase not handled well

• However, these are challenges that all life cycle models face

• The “waterfall with feedback” model was created in response

• Slide 19 shows the “with feedback” version

21

© Kenneth M. Anderson, 2016

Rapid Prototyping

22

Rapid Prototype!

Verify!

Retirement!

Operations!

Test!

Implementation!
Verify!

Design!

Req. Change!

© Kenneth M. Anderson, 2016

Discussion

23

• Prototypes are used to develop requirements specifications

• Once reqs. are known, waterfall is used

• Prototypes are discarded once design begins

• Prototypes should not be used as a basis for implementation. Prototyping
tools do not create production quality code

• In addition, customer needs to be “educated” about prototypes

• they need to know that prototypes are used just to answer requirements-
related questions

• otherwise, they get impatient!

© Kenneth M. Anderson, 2016

Incremental

24

For each build:!
Perform detailed!
design, implement.!
Test. Deliver.!

Requirements!

Verify!

Retirement!

Operations!

Verify!

Arch. Design!

© Kenneth M. Anderson, 2016

Discussion

25

• Used by Microsoft (at least when building Windows XP)

• Programs are built everyday by the build manager

• If a programmer checks in code that “breaks the build” they become
the new build manager!

• Iterations are planned according to features

• e.g. features 1 and 2 are being worked on in iteration 1

• features 3 and 4 are in iteration 2, etc.

• This life cycle also specifies two critical roles

• product manager and program manager

• Note: the original link is no longer active; fortunately I saved a copy

http://www.cs.colorado.edu/~kena/classes/5828/f14/supplemental-materials/productmanagementvsprogramm.pdf
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=25c92015-9172-4bc8-8f91-f901f8811aff

© Kenneth M. Anderson, 2016

Spiral Model [Boehm, 1988]

26

Concept of
Operation

Requirements
Plan

Requirements
OAC

Risk
Assessment

Risk
 Ite

m Set

Risk M
anagement P

lan

Requirements

Risk
Control

Requirements
Validation

Abstract Specification
 Plan

 Abstract
Specifcation
OAC

Risk
Assessment

Risk
Control

Abstract
Specification

Abstract Specification
Validation

Concrete Specification
 Plan

 Concrete
Specification
OAC

Concrete
Specification

Concrete
Specification Validation
and Verification

Software
Development Plan

Risk
Assessment

Risk
Control

Progress
through
steps

Cumulative
cost

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

Plan next phases

CommitReview partition

Determine
objectives,
alternatives,
constraints
(OAC)

© Kenneth M. Anderson, 2016

Discussion

27

• Similar to Iterative Model, but:

• each iteration is driven by “risk management”

• Determine objectives and current status

• Identify Risks

• Develop plan to address highest risk items and proceed through
iteration

• Repeat

© Kenneth M. Anderson, 2016

Rational Unified Process

28

PHASES

PRODUCT
CYCLES

CORE
WORKFLOWS

CYCLE 1 CYCLE 2 CYCLE 3 . . . CYCLE N

INCEPTION ELABORATION CONSTRUCTION TRANSITION

iteration
1

iteration
2

iteration
3

iteration
4

iteration
5

iteration
6 . . . iteration

n - 1
iteration

n

Requirements Analysis Design Implementation Test

ITERATIONS

© Kenneth M. Anderson, 2016

Discussion

29

• A variant of the waterfall model with all of the major steps

• It advocates the use of object-oriented analysis and design techniques

throughout

• Our “big three” concepts from Lecture 1 writ large

• Specification: objects and classes used in all phases

• Translation: objects and classes go from high level specs to extremely

detailed specs that can be translated directly to code

• some OO A&D tools will generate source code based on UML designs

• Iteration: Product Cycles ⇒ Phase ⇒ Iterations ⇒ Major Life Cycle Steps

• A step towards agile in that the activities are “fractal”

• You may find yourself performing implementation and testing during

project inception

© Kenneth M. Anderson, 2016

Summary

30

• Life cycles make software development

• predictable, repeatable, measurable, and efficient

• High-quality processes should lead to high-quality products

• at least it improves the odds of producing good software

• We’ve seen

• Typical stages in software life cycles

• Examples of traditional software life cycles

© Kenneth M. Anderson, 2016

Coming Up Next

• Lecture 7: Introduction to Agile Life Cycles

31

