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Introduction to Software Life Cycles

CSCI 5828: Foundations of Software Engineering

Lecture 06 — 09/08/2016
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Goals

• Present an introduction to the topic of software life cycles


• concepts and terminology


• benefits and limitations


• examples
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Background (I)

• In software engineering, “process is king”


• That is, the process by which we do things is of utmost importance


• We want our activities to be coordinated and planned


• that is, “engineered”


• Why?


• A high quality process increases our ability to create a high quality product
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Background (II)

• process 

• a series of steps that people follow involving activities and resources 
that produce an intended output of some kind


• Activities are arranged into a workflow with


• sequences of steps (supports basic work practice)


• branches (supports conditional behavior)


• loops (supports iteration)


• Each activity


• has a set of inputs and/or entry criteria


• and may produce an output that is used in a subsequent step
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Background (III)

• A process typically has a set of guiding principles about why you should follow 
its particular approach


• it should be able to articulate the goals of each of its activities


• A process uses resources, subject to a set of constraints


• two primary constraints: schedule (time) & budget (money)


• Designers of software life cycles created their particular life cycle to help 
software engineers achieve their goals while meeting their constraints


• Unfortunately, few life cycles offer guidance on what to do when a limit has 
been reached


• i.e. you’ve run out of time or you’ve run out of money


• Agile is different, as we shall see
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Background (IV)

• Why bother with defining and following a life cycle for software development?


• Impose consistency and structure on the work practice of an organization


• especially across project teams in a single organization


• or across two or more projects performed by the same team


• provide a vehicle for capturing/measuring performance to


• improve future performance by a particular team


• to provide evidence needed to change/improve the process


• To answer the question: What do I do today?☺

6



© Kenneth M. Anderson, 2016

Background (V)

• Similarities and differences with manufacturing processes


• Software life cycles are similar to manufacturing processes


• You need to design the process to produce a high quality product


• You need to monitor the process and look for ways to improve it


• The process organizes the steps to ensure the product can be produced 
within budgetary and scheduling constraints


• BUT


• in manufacturing, design is “short”, production is “long” and most of your 
costs are tied up in production; use varies from instant to long lived


• in software, design is “long” (and difficult), production is instantaneous (it’s 
trivial to create a new copy of the final system) and use can be “forever”
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Typical Steps in a Software Life Cycle

• Feasibility; Development of a Business Plan

• Requirements Analysis and Specification

• Design

• Implementation and Integration

• Operation and Maintenance


• Pervasive Concerns 
• Testing

• Change Management

• Configuration Management

• Build Management and Continuous Integration
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Heads-Up

• In the following slides (10-29), I adopt a traditional perspective of SE


• one that is consistent with the “waterfall” model of development


• one that assumes a development context with many large stakeholders


• one that assumes “requirements and design up front”


• We will revisit and unpack this material as we present/investigate agile life 
cycles more deeply


• A lot of this material is “musty” from a modern software engineering 
perspective but it is important to understand the changes that Agile life 
cycles made to the more traditional perspective of SE
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Feasibility and Business Plan

• In some (most?) development contexts


• an idea for a new software system does NOT lead straight to requirements


• instead, just enough of the proposed system is defined/discussed to 
assess


• whether it is technically feasible to develop


• whether there are enough resources to develop it


• whether it will produce enough revenue to justify the costs of 
development


• Many proposed systems fail to get past this stage
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Requirements Analysis and Specification

• Problem Definition ⇒ 
Requirements Specification 

• determine exactly what client 
wants and identify constraints


• develop a contract with client


• Specify the product’s task 
explicitly


• Difficulties 

• client asks for wrong product


• client is computer/software 
illiterate


• specifications may be 
ambiguous, inconsistent, 
incomplete


• Validation 

• extensive reviews to check that 
requirements satisfy client needs


• look for ambiguity, consistency, 
incompleteness


• develop system/acceptance test 
plan
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Design

• Requirements Specification ⇒ 
Design 

• develop architectural design 
(system structure)


• decompose software into 
modules with module interfaces


• develop detailed design (module 
specifications)


• select algorithms and data 
structures


• maintain record of design 
decisions


• Difficulties 

• miscommunication between 
module designers


• design may be inconsistent, 
incomplete, ambiguous


• Verification 

• extensive design reviews 
(inspections) to determine that 
design conforms to requirements


• check module interactions


• develop integration test plan
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Implementation and Integration

• Design ⇒ Implementation 

• implement modules and verify 
they meet their specifications


• combine modules according to 
architectural design


• Difficulties 

• module interaction errors


• order of integration has a critical 
influence on product quality


• Verification and Testing 

• code reviews to determine that 
implementation conforms to 
requirements and design


• develop unit/module test plan: 
focus on individual module 
functionality


• develop integration test plan: 
focus on module interfaces


• develop system test plan: focus 
on requirements and determine 
whether product as a whole 
functions correctly

13



© Kenneth M. Anderson, 2016

Operation and Maintenance

• Operation ⇒ Change 

• maintain software after (and 
during) user operation


• determine whether product as a 
whole still functions correctly


• Difficulties 

• design not extensible


• lack of up-to-date 
documentation


• personnel turnover


• Verification and Testing 

• review  to determine that change 
is made correctly and all 
documentation updated


• test to determine that change is 
correctly implemented


• test to determine that no 
inadvertent changes were made 
to compromise system 
functionality
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Discussion

• You will see the previous five activities appear in almost every software life 
cycle


• Within each of these major types of development activities, there will be


• lots of different sub-activities


• UI design, code reviews, refactoring, build management, configuration 
management, deployment, testing, profiling, debugging, etc.


• meetings, e-mail, texting, IM, phone calls, etc. (i.e. coordination)


• change requests, identification of problems, resolution of ambiguities, 
problem solving, etc.


• “controlled chaos”
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Example Life Cycles

• One Anti Life Cycle


• “Code & Fix”


• Exemplars


• Waterfall


• Rapid Prototyping


• Incremental


• Spiral Model


• Rational Unified Process
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Code & Fix
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Build First 
Version 

Retirement 

Operations Mode 

Modify until 
Client is satisfied 
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Discussion
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• Useful for small-scale, personal development


• Problems become apparent in any serious coding effort


• No process for things like versioning, testing, change management, etc.


• If you do any of these things, you are no longer doing “code and fix”


• Difficult to coordinate activities of multiple programmers


• Non-technical users cannot explain how the program should work


• Programmers do not know or understand user needs
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Waterfall
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Requirements!

Verify!

Retirement!

Operations!

Test!

Implementation!
Verify!

Design!

Req. Change!
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Discussion
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• Proposed in early 70s by Winston Royce


• as how NOT to run a software development project (!!!)


• Widely used (even today)


• Advantages


• Straightforward to Measure


• Possible to move between stages when the need occurs 


• Experience applying steps in past projects can be used in estimating 
duration of steps in future projects


• Produces software artifacts that can be re-used in other projects
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Discussion

• The original waterfall model had disadvantages because it disallowed 
iteration


• This made the process inflexible and monolithic


• Making estimates about how long the process would take was difficult


• Did not deal well with changing requirements


• Maintenance phase not handled well


• However, these are challenges that all life cycle models face


• The “waterfall with feedback” model was created in response


• Slide 19 shows the “with feedback” version
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Rapid Prototyping
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Rapid Prototype!

Verify!

Retirement!

Operations!

Test!

Implementation!
Verify!

Design!

Req. Change!
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Discussion
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• Prototypes are used to develop requirements specifications


• Once reqs. are known, waterfall is used


• Prototypes are discarded once design begins


• Prototypes should not be used as a basis for implementation. Prototyping 
tools do not create production quality code


• In addition, customer needs to be “educated” about prototypes


• they need to know that prototypes are used just to answer requirements-
related questions


• otherwise, they get impatient!



© Kenneth M. Anderson, 2016

Incremental
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For each build:!
Perform detailed!
design, implement.!
Test. Deliver.!

Requirements!

Verify!

Retirement!

Operations!

Verify!

Arch. Design!
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Discussion
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• Used by Microsoft (at least when building Windows XP)


• Programs are built everyday by the build manager


• If a programmer checks in code that “breaks the build” they become 
the new build manager!


• Iterations are planned according to features


• e.g. features 1 and 2 are being worked on in iteration 1


• features 3 and 4 are in iteration 2, etc.


• This life cycle also specifies two critical roles


• product manager and program manager


• Note: the original link is no longer active; fortunately I saved a copy

http://www.cs.colorado.edu/~kena/classes/5828/f14/supplemental-materials/productmanagementvsprogramm.pdf
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=25c92015-9172-4bc8-8f91-f901f8811aff
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Spiral Model [Boehm, 1988]
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Discussion
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• Similar to Iterative Model, but:


• each iteration is driven by “risk management”


• Determine objectives and current status


• Identify Risks


• Develop plan to address highest risk items and proceed through 
iteration


• Repeat
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Rational Unified Process
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Discussion
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• A variant of the waterfall model with all of the major steps

• It advocates the use of object-oriented analysis and design techniques 

throughout

• Our “big three” concepts from Lecture 1 writ large


• Specification: objects and classes used in all phases

• Translation: objects and classes go from high level specs to extremely 

detailed specs that can be translated directly to code

• some OO A&D tools will generate source code based on UML designs


• Iteration: Product Cycles ⇒ Phase ⇒ Iterations ⇒ Major Life Cycle Steps


• A step towards agile in that the activities are “fractal”

• You may find yourself performing implementation and testing during 

project inception
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Summary
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• Life cycles make software development


• predictable, repeatable, measurable, and efficient


• High-quality processes should lead to high-quality products


• at least it improves the odds of producing good software


• We’ve seen


• Typical stages in software life cycles


• Examples of traditional software life cycles
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Coming Up Next

• Lecture 7: Introduction to Agile Life Cycles
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