
© Kenneth M. Anderson, 2016

Introduction to Software Engineering

CSCI 5828: Foundations of Software Engineering

Lecture 05 — 09/06/2016

1

© Kenneth M. Anderson, 2016

Returning to SE Intro

• Lets continue our “Overview of Software Engineering” that was started in
Lecture 1

• This draws on material from

• Software Engineering: Theory and Practice by Pfleeger and Atlee

2

http://www.pearsonhighered.com/academic/product/0,3110,0131469134,00.html

© Kenneth M. Anderson, 2016

What is Software Engineering?

• Simply Put: It is solving problems with software-based systems

• Design and development of these systems require

• Analysis

• decomposing large problems into smaller, understandable pieces

• abstraction is the key

• Synthesis

• building large software systems from smaller building blocks

• composition is challenging

3

© Kenneth M. Anderson, 2016

Solving Problems (I)

• To aid us in solving problems, we apply techniques and tools

• techniques: a formal “recipe” for accomplishing a goal that is typically
independent of the tools used

• automated builds, configuration management, software testing, etc.

• tools: an instrument or automated system for accomplishing something in
a better way, where “better” can mean more efficient, more accurate,
faster, etc.

• maven, git, jenkins, etc.

4

© Kenneth M. Anderson, 2016

Solving Problems (II)

• To aid us in solving problems, we apply

• procedures: a combination of tools and techniques that, in concert,
produce a particular product

• paradigms: a particular philosophy or approach for building a product

• Think: “cooking style”: may share procedures, tools, and techniques with
other styles but apply them in different ways

• By analogy: OO approach to development vs. the structured approach

• Both approaches use similar things:

• reqs., design, code, editors, compilers, etc.

• But think about the problem in fundamentally different ways

5

© Kenneth M. Anderson, 2016

Software Engineering: The Good

• Software engineering has helped to produce systems that improve our lives in
numerous ways

• helping us to perform tasks more quickly and effectively

• supporting advances in medicine, agriculture, communication,
transportation, and other industries

• Indeed, software-based systems are now ubiquitous

6

© Kenneth M. Anderson, 2016

Software Engineering: The Bad (I)

• Software is not without its problems

• Systems function, but not in the way we expect

• Or systems crash, generate the wrong output, etc.

• Or the process for producing a system is riddled with problems leading to
a failure to produce the entire system

• many projects get cancelled without ever producing a system

• One study in the late 80s found that in a survey of 600 firms, more than 35%
reported having a runaway development project. A runway project is one in
which the budget and schedule are completely out of control.

7

© Kenneth M. Anderson, 2016

Software Engineering: The Bad (II)

• CHAOS Report from Standish Group

• Has studied over 40,000 industry software development projects over the
course of 1994 to 2004.

• Success rates (projects completed on-time, within budget) in 2004 was
34%, up from 16.2% in 1994

• Failure rates (projects cancelled before completion) in 2004 was 15%,
down from 31% in 1994.

• In 2004, “challenged” projects made up 51% of the projects included in
the survey.

• A challenged project is one that was over time, over budget and/or
missing critical functionality

8

© Kenneth M. Anderson, 2016

Software Engineering: The Bad (III)

• Most challenged projects in 2004 had a cost overrun of under 20% of the
budget, compared to 60% in 1994

• The average cost overrun in 2004 was 43% versus an average cost overrun
of 180% in 1994.

• In 2004, total U.S. project waste was 55 billion dollars with 17 billion of that in
cost overruns; Total project spending in 2004 was 255 billion

• In 1994, total U.S. project waste was 140 billion (80 billion from failed
projects) out of a total of 250 billion in project spending

9

© Kenneth M. Anderson, 2016

Software Engineering: The Bad (IV)

• So, things are getting better (attributed to better project management skills
industry wide), but we still have a long way to go.

• 66% of the surveyed projects in 2004 did not succeed!

10

© Kenneth M. Anderson, 2016

Software Engineering: The Ugly (I)

• Loss of NASA’s Mars Climate Observer

• due to mismatch of English and Metric units!

• even worse: problem was known but politics between JPL and Houston
prevented fix from being deployed

• Denver International Airport

• Luggage system: 16 months late, 3.2 billion dollars over budget!

11

© Kenneth M. Anderson, 2016

Software Engineering: The Ugly (II)

• Therac-25 (safety critical system: failure poses threat to life or health)

• Machine had two modes:

• “electron beam” and “megavolt x-ray”

• “megavolt” mode delivered x-rays to a patient by colliding high energy
electrons into a “target”

• Patients died when a “race condition” in the software allowed the
megavolt mode to engage when the target was not in position

• Related to a race between a “type ahead” feature in the user interface
and the process for rotating the target into position

12

© Kenneth M. Anderson, 2016

Testing

• Testing is a critical element of software development life cycles

• called software quality control or software quality assurance

• basic goals: validation and verification

• validation: are we building the right product?

• verification: does “X” meet its specification?

• where “X” can be code, a model, a design diagram, a requirement, …

• At each stage, we need to verify that the thing we produce accurately
represents its specification

13

© Kenneth M. Anderson, 2016

Terminology

• An error is a mistake made by an engineer

• often a misunderstanding of a requirement or design specification

• A fault is a manifestation of that error in the code

• what we often call “a bug”

• A failure is an incorrect output/behavior that is caused by executing a fault

• The failure may occur immediately (crash!) or much, much later in the execution

• Testing attempts to surface failures in our software systems

• Debugging attempts to associate failures with faults so they can be removed
from the system

• If a system passes all of its tests, is it free of all faults?

14

© Kenneth M. Anderson, 2016

No!

• Faults may be hiding in portions of the code that only rarely get executed

• “Testing can only be used to prove the existence of faults not their
absence” or “Not all faults have failures”

• Sometimes faults mask each other resulting in no visible failures!

• this is particularly insidious

• However, if we do a good job in creating a test set that

• covers all functional capabilities of a system

• and covers all code using a metric such as “branch coverage”

• Then, having all tests pass increases our confidence that our system has high
quality and can be deployed

15

© Kenneth M. Anderson, 2016 16

Looking for Faults

All possible states/behaviors of a system

© Kenneth M. Anderson, 2016 17

Looking for Faults

Tests are a way of sampling the behaviors of a software system,
looking for failures

As you can see, its
not very
comprehensive

© Kenneth M. Anderson, 2016 18

One way forward? Fold

The testing literature advocates folding the space into equivalent
behaviors and then sampling each partition

© Kenneth M. Anderson, 2016

What does that mean?

19

• Consider a simple example like the greatest common denominator function

• int gcd(int x, int y)

• At first glance, this function has an infinite number of test cases

• But lets fold the space

• x=6 y=9, returns 3, tests common case

• x=2 y=4, returns 2, tests when x is the GCD

• x=3 y=5, returns 1, tests two primes

• x=9 y=0, returns ?, tests zero

• x=-3 y=9, returns ?, tests negative

© Kenneth M. Anderson, 2016

Completeness

• From this discussion, it should be clear that “completely” testing a system
is impossible

• So, we settle for heuristics

• attempt to fold the input space into different functional categories

• then create tests that sample the behavior/output for each functional
partition

• As we will see, we also look at our coverage of the underlying code; are
we hitting all statements, all branches, all loops?

20

© Kenneth M. Anderson, 2016

Continuous Testing

• Testing is a continuous process that should be performed at every stage of a
software development process

• During requirements gathering, for instance, we must continually query the
user, “Did we get this right?”

• Facilitated by an emphasis on iteration throughout a life cycle

• at the end of each iteration

• we check our results to see if what we built is meeting our
requirements (specification)

21

© Kenneth M. Anderson, 2016

Testing the System (I)

• Unit Tests

• Tests that cover low-level aspects of a system

• For each module, does each operation perform as expected

• For method foo(), we’d like to see another method testFoo()

• Integration Tests

• Tests that check that modules work together in combination

• Most projects on schedule until they hit this point (MMM, Brooks)

• All sorts of hidden assumptions are surfaced when code written by
different developers are used in tandem

• Lack of integration testing has led to spectacular failures (Mars Polar Lander)

22

© Kenneth M. Anderson, 2016

Testing the System (II)

• System Tests

• Tests performed by the developer to ensure that all major functionality has
been implemented

• Have all user stories been implemented and function correctly?

• Acceptance Tests

• Tests performed by the user to check that the delivered system meets their
needs

• In large, custom projects, developers will be on-site to install system
and then respond to problems as they arise

23

© Kenneth M. Anderson, 2016

Multi-Level Testing

• Once we have code, we can perform three types of tests

• Black Box Testing

• Does the system behave as predicted by its specification

• Grey Box Testing

• Having a bit of insight into the architecture of the system, does it
behave as predicted by its specification

• White Box Testing

• Since, we have access to most of the code, lets make sure we are
covering all aspects of the code: statements, branches, …

24

© Kenneth M. Anderson, 2016 25

Black Box Testing

SystemInput Actual Output

Spec Expected Output

A black box test passes input to a system, records the
actual output and compares it to the expected output

== ??

Note: if you do not have a spec, then any behavior by the system is correct!

© Kenneth M. Anderson, 2016 26

Results

• if actual output == expected output

• TEST PASSED

• else

• TEST FAILED

• Process

• Write at least one test case per functional capability

• Iterate on code until all tests pass

• Need to automate this process as much as possible

© Kenneth M. Anderson, 2016

Black Box Categories

• Functionality

• User input validation (based off specification)

• Output results

• State transitions

• are there clear states in the system in which the system is supposed to
behave differently based on the state?

• Boundary cases and off-by-one errors 

27

© Kenneth M. Anderson, 2016

Grey Box Testing

• Use knowledge of system’s architecture to create a more complete set of
black box tests

• Verifying auditing and logging information

• for each function is the system really updating all internal state correctly

• Data destined for other systems

• System-added information (timestamps, checksums, etc.)

• “Looking for Scraps”

• Is the system correctly cleaning up after itself

• temporary files, memory leaks, data duplication/deletion

28

© Kenneth M. Anderson, 2016

White Box Testing

• Writing test cases with complete knowledge of code

• Format is the same: input, expected output, actual output

• But, now we are looking at

• code coverage (more on this in a minute)

• proper error handling

• working as documented (is method “foo” thread safe?)

• proper handling of resources

• how does the software behave when resources become constrained?

29

© Kenneth M. Anderson, 2016

Code Coverage (I)

• A criteria for knowing white box testing is “complete”

• statement coverage

• write tests until all statements have been executed

• branch coverage (a.k.a. edge coverage)

• write tests until each edge in a program’s control flow graph has been
executed at least once (covers true/false conditions)

• condition coverage

• like branch coverage but with more attention paid to the conditionals (if
compound conditional, ensure that all combinations have been
covered)

30

© Kenneth M. Anderson, 2016

Code Coverage (II)

• A criteria for knowing white box testing is “complete”

• path coverage

• write tests until all paths in a program’s control flow graph have been
executed multiple times as dictated by heuristics, e.g.,

• for each loop, write a test case that executes the loop

• zero times (skips the loop)

• exactly one time

• more than once (exact number depends on context)

31

© Kenneth M. Anderson, 2016

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;
if (Y < 20 and then X mod 2 = 0) then

Y := Y + 20;
else

Y := Y – 20;
end if;
return 2 ∗ X + Y;

end P;
32

A Sample Ada Program to Test

© Kenneth M. Anderson, 2016

2,3,4 5

6

9′

10

12

14

T T

F

F
9

T

F

7

T
F

33

P’s Control Flow Graph (CFG)

© Kenneth M. Anderson, 2016 34

White-box Testing Criteria

• Statement Coverage

• Create a test set T such that

• by executing P for each t in T

• each elementary statement of P is executed at least once

© Kenneth M. Anderson, 2016

2,3,4 5

6

9′

10

12

14
F

F
9

T

F

7
F

35

All-Statements Coverage of P

T TT

© Kenneth M. Anderson, 2016

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-statements-adequate
test set:

36

All-Statements Coverage of P

F

T TT

© Kenneth M. Anderson, 2016

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-statements-adequate
test set:

(X = 20, Y = 10)

37

All-Statements Coverage of P

T T

F

T

© Kenneth M. Anderson, 2016

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-statements-adequate
test set:

(X = 20, Y = 10)
(X = 20, Y = 30)

38

All-Statements Coverage of P

T T

F

T

© Kenneth M. Anderson, 2016 39

White-box Testing Criteria

• Edge Coverage

• Select a test set T such that

• by executing P for each t in T

• each edge of P’s control flow graph is traversed at least once

© Kenneth M. Anderson, 2016

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

40

All-Edges Coverage of P

T T

F

T

© Kenneth M. Anderson, 2016

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-edges-adequate test set:

41

All-Edges Coverage of P

T T

F

T

© Kenneth M. Anderson, 2016

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-edges-adequate test set:
(X = 20, Y = 10)

42

All-Edges Coverage of P

T T

F

T

© Kenneth M. Anderson, 2016

2,3,4 5

6

9′

10

12

14
F

9
T

F

7
F

Example all-edges-adequate test set:
(X = 20, Y = 10)
(X =15, Y = 30)

43

All-Edges Coverage of P

T T

F

T

© Kenneth M. Anderson, 2016

What is Good Software?

• “Good” is often associated with some definition of quality. The higher the quality, the better
the software.

• The problem? Many different definitions of quality!

• Transcendental: where quality is something we can recognize but not define (“I know
it when I see it”)

• User: where quality is determined by evaluating the fitness of a system for a particular
purpose or task (or set of tasks)

• Manufacturing: quality is conformance to a specification

• Product: quality is determined by internal characteristics (e.g. number of bugs,
complexity of modules, etc.)

• Value: quality depends on the amount customers are willing to pay

• customers adopt “user view”; developers adopt “manufacturing view”, researchers
adopt “product view”; “value view” can help to tie these together

44

© Kenneth M. Anderson, 2016

What is Good Software?

• Good software engineering must always include a strategy for producing
high quality software

• Three common ways that SE considers quality:

• The quality of the product (product view)

• The quality of the process (manufacturing view)

• The quality of the product in the context of a business environment (user
view)

• The results of the first two are termed the “technical value of a system”; The
latter is the “business value of a system”

45

© Kenneth M. Anderson, 2016

The Quality of the Product

• Users judge a system on external characteristics

• correct functionality, number of failures, types of failures

• Developers judge the system on internal characteristics

• types of faults, reliability, efficiency, etc.

• Quality models can be used to relate these two views

• An example is McCall’s quality model

• This model can be useful to developers: want to increase “reliability”
examine your system’s “consistency, accuracy, and error tolerance”

46

© Kenneth M. Anderson, 2016

The Quality of the Process (I)

• Quality of the development and maintenance process is as important as the
product quality

• The development process needs to be modeled

47

© Kenneth M. Anderson, 2016

The Quality of the Process (II)

• Modeling will address questions such as

• What steps are needed and in what order?

• Where steps in the process are effective for finding faults?

• How can you shape the process to find faults earlier?

• How can you shape the process to build fault tolerance into a system?

48

© Kenneth M. Anderson, 2016

The Quality of the Process (III)

• Models for Process Improvement

• SEI’s Capability Maturity Model (CMM)

• ISO 9000

• Software Process Improvement and Capability dEtermination (SPICE)

49

© Kenneth M. Anderson, 2016

Software Engineering: More than just Programming

• It should now be clear that software engineering is more than just

• programming, data structures, algorithms, etc.

• It takes advantage of these very useful computer science techniques but adds

• quality concerns

• testing, code reviews, validation and verification of requirements

• process concerns

• Are we using the right software life cycle? Are we monitoring our ability to
execute the process? Are we consistent? Are we getting better?

• reliance on tools, people, and support processes

• debugging, profiling, configuration management, deployment, issue tracking

50

© Kenneth M. Anderson, 2016

Summary

• In this lecture, we discussed

• We continued our introduction to the field of software engineering

• Additional definitions and concerns

• Challenges faced by the field

• The importance of quality assurance and why it is difficult to define
“quality” for software engineering

51

© Kenneth M. Anderson, 2016

SE Conferences

• International Conference on Software Engineering (ICSE)

• http://www.icse-conferences.org/

• International Symposium on the Foundations of Software Engineering (FSE)

• Automated Software Engineering

• Many, many more; See for instance

• http://www.sigsoft.org/conferences/listOfEvents.htm

52

http://www.icse-conferences.org
http://www.sigsoft.org/conferences/listOfEvents.htm

© Kenneth M. Anderson, 2016

Professional Societies

• For Computer Science in general

• ACM: Association for Computing Machinery

• http://www.acm.org/

• IEEE Computer Society

• http://www.computer.org/

• For Software Engineering

• ACM Special Interest Group on Software Engineering (ACM SIGSOFT)

• http://www.sigsoft.org/

53

http://www.acm.org
http://www.computer.org
http://www.sigsoft.org

© Kenneth M. Anderson, 2016

SE Journals

• The Big Two

• ACM Transactions on Software Engineering and Methodology

• http://tosem.acm.org/

• IEEE Transactions on Software Engineering

• <http://www.computer.org/portal/web/tse>

• Papers are also available at ACM’s and IEEE’s digital libraries

• ACM Digital Library: http://dl.acm.org/

• IEEE Digital Library: http://www.computer.org/portal/web/csdl

54

http://tosem.acm.org
http://www.computer.org/portal/web/tse
http://dl.acm.org
http://www.computer.org/portal/web/csdl

© Kenneth M. Anderson, 2016

SE-Related Sites/Blogs

• A great combination: a good developer with a blog

• loudthinking.com; inessential.com; http://daringfireball.net/

• http://joelonsoftware.com; http://ridiculousfish.com/blog/posts.html

• http://www.tbray.org/ongoing/; scripting.com; http://blog.wilshipley.com/

• http://jeff-vogel.blogspot.com/; http://notch.tumblr.com/

• More general: slashdot.org; stackoverflow.com; semat.org; Hacker News

• Humor:

• xkcd.org, The Order of the Stick, thedailywtf.com

• Please send me others that you find useful

55

http://loudthinking.com
http://inessential.com
http://daringfireball.net
http://joelonsoftware.com
http://ridiculousfish.com/blog/posts.html
http://www.tbray.org/ongoing/
http://scripting.com
http://blog.wilshipley.com
http://jeff-vogel.blogspot.com
http://notch.tumblr.com
http://slashdot.org
http://stackoverflow.com
http://www.semat.org/
https://news.ycombinator.com
http://xkcd.org/
http://www.giantitp.com/comics/oots0001.html
http://thedailywtf.com

