Introduction to Software Engineering

CSCI 5828: Foundations of Software Engineering
Lecture 05 — 09/06/2016

© Kenneth M. Anderson, 2016



Returning to SE Intro

* Lets continue our “Overview of Software Engineering” that was started in
Lecture 1

* This draws on material from

» Software Engineering: Theory and Practice by Pfleeger and Atlee

© Kenneth M. Anderson, 2016


http://www.pearsonhighered.com/academic/product/0,3110,0131469134,00.html

What is Software Engineering”

- Simply Put: It is solving problems with software-based systems
* Design and development of these systems require
- Analysis
» decomposing large problems into smaller, understandable pieces
 abstraction is the key
- Synthesis
* building large software systems from smaller building blocks

« composition is challenging

© Kenneth M. Anderson, 2016



Solving Problems (|)

 To aid us in solving problems, we apply techniques and tools

- techniques: a formal “recipe” for accomplishing a goal that is typically
independent of the tools used

» automated builds, configuration management, software testing, etc.

* tools: an instrument or automated system for accomplishing something in
a better way, where “better” can mean more efficient, more accurate,
faster, etc.

* maven, git, jenkins, etc.

© Kenneth M. Anderson, 2016



Solving Problems (l1)

 To aid us in solving problems, we apply

- procedures: a combination of tools and techniques that, in concert,
produce a particular product

* paradigms: a particular philosophy or approach for building a product

 Think: “cooking style”: may share procedures, tools, and techniques with
other styles but apply them in different ways

* By analogy: OO approach to development vs. the structured approach
- Both approaches use similar things:
* regs., design, code, editors, compilers, etc.

- But think about the problem in fundamentally different ways

© Kenneth M. Anderson, 2016



Software Engineering: The Good

» Software engineering has helped to produce systems that improve our lives in
numerous ways

* helping us to perform tasks more quickly and effectively

* supporting advances in medicine, agriculture, communication,
transportation, and other industries

* Indeed, software-based systems are now ubiquitous

© Kenneth M. Anderson, 2016



Software

—ngineering: The

« Software is not without its problems

3ad (1)

» Systems function, but not in the way we expect

» Or systems crash, generate the wrong output, etc.

 Or the process for producing a system is riddled with problems leading to

a failure to produce the entire system

* many projects get cancelled without ever producing a system

* One study in the late 80s found that in a survey of 600 firms, more than 35%
reported having a runaway development project. A runway project is one in
which the budget and schedule are completely out of control.

© Kenneth M. Anderson, 2016



Software Engineering: The Bad (ll)

+ CHAOS Report from Standish Group

* Has studied over 40,000 industry software development projects over the
course of 1994 to 2004.

* Success rates (projects completed on-time, within budget) in 2004 was
34%, up from 16.2% in 1994

* Failure rates (projects cancelled before completion) in 2004 was 15%,
down from 31% in 1994.

 In 2004, “challenged” projects made up 51% of the projects included Iin
the survey.

A challenged project is one that was over time, over budget and/or
missing critical functionality

© Kenneth M. Anderson, 2016



Software Engineering: The Bad (lll)

* Most challenged projects in 2004 had a cost overrun of under 20% of the
budget, compared to 60% in 1994

* The average cost overrun in 2004 was 43% versus an average cost overrun
of 180% in 1994.

 In 2004, total U.S. project waste was 55 billion dollars with 17 billion of that in
cost overruns; Total project spending in 2004 was 255 billion

* In 1994, total U.S. project waste was 140 billion (80 billion from failed
projects) out of a total of 250 billion in project spending

© Kenneth M. Anderson, 2016



Software Engineering: The Bad (IV)

* S0, things are getting better (attributed to better project management skills
industry wide), but we still have a long way to go.

* 66% of the surveyed projects in 2004 did not succeed!

© Kenneth M. Anderson, 2016

10



Software Engineering: The Ugly (l)

* Loss of NASA’s Mars Climate Observer
 due to mismatch of English and Metric units!

* even worse: problem was known but politics between JPL and Houston
prevented fix from being deployed

* Denver International Airport

* Luggage system: 16 months late, 3.2 billion dollars over budget!

© Kenneth M. Anderson, 2016 11



Software Engineering: The Ugly (ll)

» Therac-25 (safety critical system: failure poses threat to life or health)

* Machine had two modes:
 “electron beam” and “megavolt x-ray”

- “megavolt” mode delivered x-rays to a patient by colliding high energy
electrons into a “target”

* Patients died when a “race condition” in the software allowed the
megavolt mode to engage when the target was not in position

* Related to a race between a “type ahead” feature in the user interface
and the process for rotating the target into position

© Kenneth M. Anderson, 2016 12



Testing

+ Testing is a critical element of software development life cycles
- called software quality control or software quality assurance
* basic goals: validation and verification
- validation: are we building the right product?
- verification: does “X” meet its specification?
* where “X” can be code, a model, a design diagram, a requirement, ...

- At each stage, we need to verify that the thing we produce accurately
represents its specification

© Kenneth M. Anderson, 2016 13



Terminology

* An error is a mistake made by an engineer
- often a misunderstanding of a requirement or design specification
- A fault is a manifestation of that error in the code
- what we often call “a bug”
- A failure is an incorrect output/behavior that is caused by executing a fault
- The failure may occur immediately (crash!) or much, much later in the execution
 Testing attempts to surface failures in our software systems

- Debugging attempts to associate failures with faults so they can be removed
from the system

- If a system passes all of its tests, is it free of all faults?

© Kenneth M. Anderson, 2016 14



No!

 Faults may be hiding in portions of the code that only rarely get executed

» “Testing can only be used to prove the existence of faults not their
absence” or “Not all faults have failures”

» Sometimes faults mask each other resulting in no visible failures!
* this is particularly insidious
* However, if we do a good job in creating a test set that
 covers all functional capabilities of a system
- and covers all code using a metric such as “branch coverage”

* Then, having all tests pass increases our confidence that our system has high
quality and can be deployed

© Kenneth M. Anderson, 2016 15



Looking for Faults

All possible states/behaviors of a system

© Kenneth M. Anderson, 2016

16



Looking for Faults

AS you can see, its
not very
comprehensive

Tests are a way of sampling the behaviors of a software system,
looking for failures

© Kenneth M. Anderson, 2016

17



One way forward”? Fold

The testing literature advocates folding the space into equivalent
behaviors and then sampling each partition

© Kenneth M. Anderson, 2016

18



What does that mean??

» Consider a simple example like the greatest common denominator function
* int gcd(int x, int y)
- At first glance, this function has an infinite number of test cases
 But lets fold the space
* X=6 y=9, returns 3, tests common case

« X=2 y=4, returns 2, tests when x is the GCD

x=3 y=5, returns 1, tests two primes

x=9 y=0, returns ?, tests zero

x=-3 y=9, returns ?, tests negative

© Kenneth M. Anderson, 2016



Completeness

* From this discussion, it should be clear that “completely” testing a system
IS Impossible

« S0, we settle for heuristics
- attempt to fold the input space into different functional categories

- then create tests that sample the behavior/output for each functional
partition

- As we will see, we also look at our coverage of the underlying code; are
we hitting all statements, all branches, all loops?

© Kenneth M. Anderson, 2016 20



Continuous Testing

» Testing is a continuous process that should be performed at every stage of a
software development process

 During requirements gathering, for instance, we must continually query the
user, “Did we get this right?”

- Facilitated by an emphasis on iteration throughout a life cycle
- at the end of each iteration

» we check our results to see if what we built is meeting our
requirements (specification)

© Kenneth M. Anderson, 2016 21



Testing the System (l)

* Unit Tests
- Tests that cover low-level aspects of a system
- For each module, does each operation perform as expected
* For method foo(), we’d like to see another method testFoo()
* Integration Tests
- Tests that check that modules work together in combination
* Most projects on schedule until they hit this point (MMM, Brooks)

» All sorts of hidden assumptions are surfaced when code written by
different developers are used in tandem

- Lack of integration testing has led to spectacular failures (Mars Polar Lander)

© Kenneth M. Anderson, 2016 22



Testing the System (ll)

- System Tests

* Tests performed by the developer to ensure that all major functionality has
been implemented

- Have all user stories been implemented and function correctly?
- Acceptance Tests

- Tests performed by the user to check that the delivered system meets their
needs

* In large, custom projects, developers will be on-site to install system
and then respond to problems as they arise

© Kenneth M. Anderson, 2016 23



Multi-Level Testing

* Once we have code, we can perform three types of tests
- Black Box Testing
* Does the system behave as predicted by its specification
* Grey Box Testing

* Having a bit of insight into the architecture of the system, does it
behave as predicted by its specification

- White Box Testing

« Since, we have access to most of the code, lets make sure we are
covering all aspects of the code: statements, branches, ...

© Kenneth M. Anderson, 2016

24



Black Box Testing

4 )
Input > System » Actual Output
S g :‘: 27
Spec Expected Output

A black box test passes input to a system, records the
actual output and compares it to the expected output

Note: if you do not have a spec, then any behavior by the system is correct!

© Kenneth M. Anderson, 2016 25



Results

If actual output == expected output

- TEST PASSED

else

- TEST FAILED

Process
» Write at least one test case per functional capability

* |terate on code until all tests pass

Need to automate this process as much as possible

© Kenneth M. Anderson, 2016

26



Black Box Categories

* Functionality
» User input validation (based off specification)
» Qutput results

« State transitions

» are there clear states in the system in which the system is supposed to
behave differently based on the state?

* Boundary cases and off-by-one errors

© Kenneth M. Anderson, 2016



Grey Box Testing

» Use knowledge of system’s architecture to create a more complete set of
black box tests

- Verifying auditing and logging information
- for each function is the system really updating all internal state correctly
» Data destined for other systems
» System-added information (timestamps, checksums, etc.)
 “Looking for Scraps”
* Is the system correctly cleaning up after itself

* temporary files, memory leaks, data duplication/deletion

© Kenneth M. Anderson, 2016 28



White Box Testing

» Writing test cases with complete knowledge of code
* Format is the same: input, expected output, actual output

- But, now we are looking at

code coverage (more on this in a minute)

proper error handling

working as documented (is method “foo” thread safe?)

proper handling of resources

 how does the software behave when resources become constrained?

© Kenneth M. Anderson, 2016 29



Code Coverage (l)

* A criteria for knowing white box testing is “complete”
- statement coverage
- write tests until all statements have been executed
* branch coverage (a.k.a. edge coverage)

- write tests until each edge in a program’s control flow graph has been
executed at least once (covers true/false conditions)

- condition coverage

» like branch coverage but with more attention paid to the conditionals (if
compound conditional, ensure that all combinations have been
covered)

© Kenneth M. Anderson, 2016

30



Code Coverage (ll)

* A criteria for knowing white box testing is “complete”
- path coverage

- write tests until all paths in a program’s control flow graph have been
executed multiple times as dictated by heuristics, e.g.,

* for each loop, write a test case that executes the loop
» zero times (skips the loop)
- exactly one time

* more than once (exact number depends on context)

© Kenneth M. Anderson, 2016

31



A Sample Ada

L O 0O NO O Wi =

OO~ WhN =20

Program to Test

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop
X:=X-10;
exit when X =10;
end loop;
if (Y < 20 and then X mod 2 = 0) then
Y: =Y + 20;
else
Y : =Y -20;
end If;
return 2 « X +Y;

end P;

© Kenneth M. Anderson, 2016

32



2’s Control Flow Graph (CFG)

AN

© Kenneth M. Anderson, 2016

33



White-box Testing Criteria

- Statement Coverage
» Create a test set T such that
* by executing P foreachtin T

» each elementary statement of P is executed at least once

© Kenneth M. Anderson, 2016

34



All-Statements Coverage of P

© Kenneth M. Anderson, 2016

35



All-Statements Coverage of P

-
F
Example all-statements-adequate

test set:

© Kenneth M. Anderson, 2016

36



All-Statements Coverage of P

Example all-statements-adequate \ /

test set:
(X =20, Y = 10)

© Kenneth M. Anderson, 2016 37



All-Statements Coverage of P

Example all-statements-adequate \ /

test set:
(X =20, Y = 10)
(X =20, Y = 30)

© Kenneth M. Anderson, 2016 38



White-box Testing Criteria

* Edge Coverage
» Select a test set T such that
* by executing P foreachtin T

» each edge of P’s control flow graph is traversed at least once

© Kenneth M. Anderson, 2016

39



All-Edges Coverage of P

© Kenneth M. Anderson, 2016

40



All-Edges Coverage of P

T
F
Example all-edges-adequate test set:

© Kenneth M. Anderson, 2016

41



All-Edges Coverage of P

Example all-edges-adequate test set:
(X =20,Y =10

© Kenneth M. Anderson, 2016

42



All-Edges Coverage of P

cffo
OO O]

Example all-edges-adequate test set:

(X =20, Y = 10)
(X =15, Y = 30)

© Kenneth M. Anderson, 2016



What is Good Software”?

- “Good” is often associated with some definition of quality. The higher the quality, the better
the software.

- The problem? Many different definitions of quality!

- Transcendental: where quality is something we can recognize but not define (“I know
it when | see it”)

User: where quality is determined by evaluating the fithess of a system for a particular
purpose or task (or set of tasks)

Manufacturing: quality is conformance to a specification

Product: quality is determined by internal characteristics (e.g. number of bugs,
complexity of modules, etc.)

Value: quality depends on the amount customers are willing to pay

 customers adopt “user view”; developers adopt “manufacturing view”, researchers

adopt “product view”; “value view” can help to tie these together

© Kenneth M. Anderson, 2016 44



What is Good Software”?

+ Good software engineering must always include a strategy for producing
high quality software

* Three common ways that SE considers quality:
- The quality of the product (product view)
* The quality of the process (manufacturing view)

- The quality of the product in the context of a business environment (user
view)

* The results of the first two are termed the “technical value of a system”; The
latter is the “business value of a system”

© Kenneth M. Anderson, 2016

45



The Quality of the Product

« Users judge a system on external characteristics

* correct functionality, number of failures, types of failures
* Developers judge the system on internal characteristics

* types of faults, reliability, efficiency, etc.
 Quality models can be used to relate these two views

* An example is McCall’s quality model

* This model can be useful to developers: want to increase “reliability”
examine your system’s “consistency, accuracy, and error tolerance”

© Kenneth M. Anderson, 2016 46



The Quality of the Process (l)

 Quality of the development and maintenance process is as important as the
product quality

- The development process needs to be modeled

© Kenneth M. Anderson, 2016

47



The Quality of the Process (l)

- Modeling will address questions such as
« What steps are needed and in what order?
* Where steps in the process are effective for finding faults?
* How can you shape the process to find faults earlier?

* How can you shape the process to build fault tolerance into a system?

© Kenneth M. Anderson, 2016

48



The Quality of the Process (lI)

* Models for Process Improvement
» SEI’'s Capability Maturity Model (CMM)
» ISO 9000

« Software Process Improvement and Capability dEtermination (SPICE)

© Kenneth M. Anderson, 2016 49



Software

—ngineering: More than just Programming

- It should now be clear that software engineering is more than just

* programming, data structures, algorithms, etc.

- |t takes advantage of these very useful computer science techniques but adds

- quality concerns

- testing, code reviews, validation and verification of requirements

° Process concerns

« Are we using the right software life cycle? Are we monitoring our ability to
execute the process? Are we consistent? Are we getting better?

 reliance on tools, people, and support processes

- debugging, profiling, configuration management, deployment, issue tracking

© Kenneth M. Anderson, 2016 50



Summary

* In this lecture, we discussed
« We continued our introduction to the field of software engineering
- Additional definitions and concerns
- Challenges faced by the field

- The importance of quality assurance and why it is difficult to define
“quality” for software engineering

© Kenneth M. Anderson, 2016

51



SE Conferences

* International Conference on Software Engineering (ICSE)

» http://www.icse-conferences.org/

* International Symposium on the Foundations of Software Engineering (FSE)

« Automated Software Engineering

* Many, many more; See for instance

» http://www.sigsoft.org/conferences/listOfEvents.htm

© Kenneth M. Anderson, 2016

52


http://www.icse-conferences.org
http://www.sigsoft.org/conferences/listOfEvents.htm

Professional Societies

* For Computer Science in general
» ACM: Association for Computing Machinery

- http://www.acm.org/

- [IEEE Computer Society

» http:// www.computer.org/

* For Software Engineering
« ACM Special Interest Group on Software Engineering (ACM SIGSOFT)

» http://www.sigsoft.org/

© Kenneth M. Anderson, 2016

93


http://www.acm.org
http://www.computer.org
http://www.sigsoft.org

SE Journals

- The Big Two
« ACM Transactions on Software Engineering and Methodology

» http://tosem.acm.org/

 |[EEE Transactions on Software Engineering

» <http://www.computer.org/portal/web/tse>
* Papers are also available at ACM’s and IEEE’s digital libraries

- ACM Digital Library: http://dl.acm.org/

 IEEE Digital Library: http://www.computer.org/portal/web/csdl

© Kenneth M. Anderson, 2016

54


http://tosem.acm.org
http://www.computer.org/portal/web/tse
http://dl.acm.org
http://www.computer.org/portal/web/csdl

SE-Related Sites/Blogs

* A great combination: a good developer with a blog

» loudthinking.com; inessential.com; http://daringfireball.net/

* http://joelonsoftware.com; http://ridiculousfish.com/blog/posts.html

- http://www.tbray.org/ongoing/; scripting.com; http://blog.wilshipley.com/

- http://jeff-vogel.blogspot.com/; http://notch.tumblr.com/

* More general: slashdot.org; stackoverflow.com; semat.org; Hacker News

* Humor:

- xkcd.org, The Order of the Stick, thedailywtf.com

* Please send me others that you find useful

© Kenneth M. Anderson, 2016 55


http://loudthinking.com
http://inessential.com
http://daringfireball.net
http://joelonsoftware.com
http://ridiculousfish.com/blog/posts.html
http://www.tbray.org/ongoing/
http://scripting.com
http://blog.wilshipley.com
http://jeff-vogel.blogspot.com
http://notch.tumblr.com
http://slashdot.org
http://stackoverflow.com
http://www.semat.org/
https://news.ycombinator.com
http://xkcd.org/
http://www.giantitp.com/comics/oots0001.html
http://thedailywtf.com

