Git

CSCI 5828: Foundations of Software Engineering
Lecture 03 — 08/30/2015

© Kenneth M. Anderson, 2016

L ecture Goals

* Present a brief introduction to git

* You will need to know git to work on your homeworks and essays

© Kenneth M. Anderson, 2016

Git and GitHub

* I’'m asking that all essays this semester be uploaded to GitHub
» That means you need to be comfortable with the following technologies
* git
 GitHub
- Markdown
* You should also be comfortable with

- HTMLS and CSS (if you want to deliver your presentation via HTML)

- Advanced users can get more out of GitHub’s website support if they know
- Jekyll
 Today, | will provide a brief intro to git

© Kenneth M. Anderson, 2016

git

git is a distributed version control system

» <https://qgit-scm.com>

git was developed by the linux community in 2005 to help manage the
development of linux itself

* As a result, it needed to solve the problem of how to do version control of
software systems consisting of 10,000s of files with 100s-1000s of
developers all working on the project at once

To install

- Head to the Downloads page of the site above, and follow the instructions

On Mac OS X: first install homebrew: Details at <http://brew.sh>

- Then: brew install git

© Kenneth M. Anderson, 2016

https://git-scm.com
http://brew.sh

What is version control? (l)

* Just briefly, version control is keeping track of changes made to the files that
make up a software system

* The concept of version can be applied to:
- afile:
* a Java file starts with some initial content, say a class
* you check that in; that’s version zero
* You then add a method to the class and check that change in
- that’s version one

* Most version control systems handle tracking the versions of files
automatically; instead developers focus on changes to “sets of files”

© Kenneth M. Anderson, 2016

What is version control? (Il)

* The concept of version is thus typically applied to:
- a set of files:
* Your project starts with one source code file and a build script
* you check that in; that’s version zero

* You then add a second file, rename the original file, and modify the
build script

* you check in all three changes; that’s version one

* A change to a set of files that gets checked in is called a “commit”

© Kenneth M. Anderson, 2016

Versions form a line (called a “branch”)

Repo created with one
Java source file and a
build script

New Java file added,;
original java file
renamed; build script
updated

© Kenneth M. Anderson, 2016

Three new Java files
added; resource
directory created with
three images; two
previous Java files
updated

Lines are called “branches” because that's what
they do

new method bug fix
added merged

| development
bug discovered,;

| continues
bug fix branch e a

created

first attempt bug fixed
to fix it

The main branch of development is known as the “master”
oranch. This is a convention. You could call it “frog-blast-the-vent-
core” and your version control system wouldn't care

© Kenneth M. Anderson, 2016 8

http://marathongame.wikia.com/wiki/Frog_Blast_the_Vent_Core

Two Key Features of git (l)

* git has two key features that enabled its success
- Branches are quick and “cheap” to create

- In other version control systems, branches are “expensive” and hard to
deal with; they discourage branch creation

- With git, you are encouraged to branch early and branch often
* merges happen automatically most of the time
- If there’s a conflict, git has a human sort it out

* To master git, you need to become familiar and comfortable with branches
and their associated operations

© Kenneth M. Anderson, 2016

Two Key Features of git (ll)

* git has two key features that enabled its success
* Every copy of the repository is “official”;
* There is no one “centralized” repo that is the official one

» each copy has the complete contents of the repo when it is first
created

» contents can drift, of course, as developers perform work on their
local copies, but they can then be easily synchronized

* How a group synchronizes their repositories is left up to them

* because of this git supports a wide range of workflows that can
support the work of 1 developer, or 5 developers, or even 1000s of
developers. See <https://qgit-scm.com/about/distributed> for example
workflows

© Kenneth M. Anderson, 2016

10

https://git-scm.com/about/distributed

Key Concepts to Understand git (l)

<after a commit>

modify
flles as
needed

git add ... git commit

Working
Directory

Staging
Area

a.k.a. "the index"

git checkout ...

© Kenneth M. Anderson, 2016

Repository

11

Key Concepts to Understand git (ll)

(master)

O (D—2—& (&
e e (bugfix) (HeaD)

Branches are just pointers; there is one default pointer called HEAD that
(usually) just points at the latest commit of the current branch; the other
branch pointers point at the latest commit of their respective branches

The diagram above shows a situation in which the user has checked out
the master branch. The bug-fix branch points at its last commit and
both HEAD and master happen to be pointing at the same thing.

© Kenneth M. Anderson, 2016 12

Key Concepts to Understand git (ll)
(HeaD) (master)

© O—2—E O
e a (bugfix)

If | check out a specific commit, say commit 2, then HEAD moves to
point at that commit but master and bug-fix do not move.

| might do this if | wanted to then create a branch that used
commit 2 as a starting point.

© Kenneth M. Anderson, 2016 13

Common git Commands (l)

- To create a new git repository
* git init
- This command works in an empty directory or in an existing project directory

* It creates a .git subdirectory in that directory where it stores all of the
information about the repository

* On Unix-based systems calling it “.git” makes the directory “invisible”

* If you have a set of changes “staged”, you can commit them to the repository
with the command

- git commit

* An editor will open where you can type the log message for the commit

© Kenneth M. Anderson, 2016 14

Common git Commands (ll)

 To view the current status of a repo

- git status

- This will show what branch you are on, what changes there are in the working
directory, and what changes have been staged

* If you have a modified file or a new directory that you want to “stage”:
- git add <fileOrDirName>

* If you want to get rid of a file or directory:
» git rm <fileOrDirName>

- If you want to rename a file or directory:

» git mv <oldFileOrDirName> <newFileOrDirName>

© Kenneth M. Anderson, 2016

15

Common git Commands (ll1)

- To see the current branches:
- git branch
- To create a new branch
* git checkout -b <newBranchName>
- To switch to an existing branch
» git checkout <branchName>
* To push commits to a remote repository
* git push
* To retrieve commits from a remote repository

- git pull

© Kenneth M. Anderson, 2016

16

—Xample

* Let’s step through a simple example that recreates the graph of slide 13

- Word of warning: git does not generate simple integers for its version
numbers. Instead, commit version numbers look like this:

» faB840cc7775b1d2daa51dd6e4b0c66384d3554e3
* These “hashes” allow git to uniquely identify files and commits

| don’t have time to cover the cool things that the use of these hashes
enable for git; if you are curious, this book has a great explanation

« \ersion Control with Git, 2nd Edition

by Jon Loeliger, Matthew McCullough

* Publisher: O’Reilly; 2012

© Kenneth M. Anderson, 2016 17

http://shop.oreilly.com/product/0636920022862.do

Step 1: Create Repo

Create a new directory: example_project

* mkdir example_project

Enter that directory and create a file called README.md

» cd example_project; vi README.md

Edit the file to contain the following contents

® 1. vim

1 # Example Project

3 This document will be used to explain some features of git.

Save it. At the prompt, type “git init”

© Kenneth M. Anderson, 2016

18

Current Status

— 1.bash
Resolution:example_project $ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)
Resolution:example_project $ I

We’ve created a repository but we haven’t committed anything to it. We

have one file in our working directory that git knows nothing about. It
refers to that file as being “untracked”.

© Kenneth M. Anderson, 2016 19

Step 2: Track a file

* Let’s tell git to track this file

* git add README.md The file is now in

- Check the status the staging area
| and is ready to be
* git status committed.

@) @) 1. bash
Resolution:example_project $ git add README.md
Resolution:example_project $ git status
On branch master

Initial commit

;Changes to be committed:
| (use "git rm --cached <file>..." to unstage)

new file: README . md

Resolution:example_project $ I

© Kenneth M. Anderson, 2016 20

Step 3: Submit First Commit

* Let’s commit this file to the repository
» git commit -m “Initial Commit”

Resolution:example_project $ git commit -m "Initial Commit"
[master (root-commit) d519e5e] Initial Commit

1 file changed, 4 -insertions(+)

create mode 100644 README.md

Resolution:example_project $ git status

On branch master

nothing to commit, working directory clean
Resolution:example_project $

* Our change to the repository was “saved”. It’s now permanent.

» Our working directory is back to being “clean” that is unchanged from the
current commit.

© Kenneth M. Anderson, 2016

21

How do we see our commit™? (l)

» git log // show a list of commits made to the repository

Resolution:example_project $ git log

commit d519e5e0dlleblc56e79beld14bf9915891d4391
Author: Ken Anderson <ken.anderson@colorado.edu>
Date: Wed Aug 26 21:46:29 2015 -0600

Initial Commit
Resolution:example_project $

* From this we see that our commit’s “name” is
« d519e5e0d11eb1c56e79be1d14bf9915891d4391
* And, it’s log message was “Initial Commit”

* Note: “git log” is infinitely customizable; see “man git-log” for details

© Kenneth M. Anderson, 2016

How do we see our commit? (ll)

» git show // show info on the most recent commit

Resolution:example_project $ git show
commit d519e5e0dlleblc56e79beld14bf9915891d4391
Author: Ken Anderson <ken.anderson@colorado.edu>
Date: Wed Aug 26 21:46:29 2015 -0600

Initial Commit

diff --git a/README.md b/README.md
new file mode 100644

index 6000000..4350dc3

-== [dev/null

+++ b/README.md

+# Example Project

+This document will be used to explain some feature

-~ =

o
o —]
ad

ot
—

C.

Step 4: Add Commits

* Create two more commits on the master branch
 Edit README.md to contain a new line: “First Edit”

- Save it. git add; git commit -m “Second commit”

« Edit README.md to contain a new line: “Second Edit”

* Save it. git add; git commit -m “Third commit”

« Our version tree now looks like this

& name of branch
HEAD B third commit
> second commit
« first commit

This visualization produced by
GltUp <httD//g|tUDCO> © Kenneth M. Anderson, 2016

24

http://gitup.co

Reminder

 Recall that we are trying to create this graph

(HeaD) (master)

© O— —®
e e (bugfix)

* S0, it’s time to create a branch and add commits “3” and “4”. (We currently
have commits “0”, “1”, and “2”.

© Kenneth M. Anderson, 2016 25

Step 5: Create a Branch (])

- We want to create a branch off the very first commit
* As a result, we need to jump back to it
- We do that with the checkout command
» git checkout d519e5e0d11eb1c56e79be1d14bf9915891d4391

 New version tree

\0‘
)
&

ED

* Check README.md... our two edits are gone!

© Kenneth M. Anderson, 2016 26

Step 5: Create a Branch (ll)

» Create the bug-fix branch @&@ P
- git checkout -b bug-fix HEAD

» The branch is created and conceptually the HEAD is on that branch; however,
we don’t have a new commit (yet), so HEAD is really just pointing at our initial
commit but any new commits will be added to the “bug-fix” branch

© Kenneth M. Anderson, 2016 27

Step 6: Add Commits

 Create two commits on the bug-fix branch

 Edit README.md to contain a new line: “Third Edit”

» Save it. git add; git commit -m “Fourth commit”

 Edit README.md to contain a new line: “Fourth Edit”

» Save it. git add; git commit -m “Fifth commit”

» Our version tree now looks like this O &g@‘
0
HEAD

This visualization produced by
GltUp <httD//g|tUDCO> © Kenneth M. Anderson, 2016

Note: GitUp flipped the branches
when | added commits to the
bug-fix branch

28

http://gitup.co

Step 7: Time to merge (l)

- Merging branches is easy
» and many times Git can perform the merge automatically

- If it cannot, you enter a “merge conflict” state and have to help git resolve
the conflict

* Let’s see what happens when we try to merge our “bug fix” changes into our
master branch

* The rules you need to know:
- checkout the branch that should receive the changes

* Invoke “git merge” and enter the name of the branch that has the changes
to be merged

© Kenneth M. Anderson, 2016

29

Step 7: Time to merge (ll)

- git checkout master S o
o >
o &
HEAD

* git merge bug-fix

« CONFLICT: git can’t figure out how to create a README.md file that
contains all of our changes; (we edited the same two lines of the file)

Resolution:example_project $ git merge bug-fix
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.
Resolution:example_project $ git status
On branch master
You have unmerged paths.
(fix conflicts and run "git commit")

Unmerged paths:
(use "git add <file>..." to mark resolution)

no changes added to commit (use "git add" and/or "git commit -a")

Step 8: Fix the Conflict

« Take a look at the README.md file

1. vim

1 # Example Project

3 This document will be used to explain some features of git.

5 <<<<<<< HEAD
5 First Edit.

7 Second Edit.

10 Fourth Edit
11 >>>>>>> bug-fix

« Delete the lines that git added; git add README.md;

» git commit -m “Fixed Conflict”

© Kenneth M. Anderson, 2016

31

The Result?

HEAD. Our current tree looks like the graph on the left.
That corresponds to the graph below.

(HeaD) (master)

Only two things left to do to recreate the graph from slide 13.

© Kenneth M. Anderson, 2016 32

Step 9: Add a new commit

 Add a new commit
 Edit README.md to contain a new line: “Fifth Edit”

« Save it. git add; git commit -m “Seventh commit”

* The version tree now looks like this o &
& 0
HEAD.

* One more thing to do...

© Kenneth M. Anderson, 2016

33

Step 10: Move head to third commit

« Use git log to discover the name of the third commit
+ 4b775be5659¢c5619b74ba856ad82720fed9a2b0f
» Check it out
» git checkout 4b775be5659¢c5619b74ba856ad82720fed9a2b0f

* The version tree now looks like this

\S o
() A

‘b‘b‘ \)q
& 0

Follow all of these steps and convince yourself
| that the final state of the repo is equal to the
= graph we showed on slides 13 and 25.

© Kenneth M. Anderson, 2016

34

Step 11: Leave the repo in a good state

* git checkout master
- Tell git to go back to the tip of the master branch

* git is now ready to receive new commits on that branch

* Final State
&S Note: this is equivalent to the graph from slide 12

© Kenneth M. Anderson, 2016

35

Only scratched the surface...

* There is still a LOT to learn about git

- Be mindful, git is very powerful; people use it for all sorts of things!

* | recommend

- Learn Version Control with Git from fournova, makers of Tower

- Become a qit guru by Atlassian

+ See also: Getting Git Right by Atlassian

» Try Git by GitHub, Inc.

© Kenneth M. Anderson, 2016

36

https://realm.io/news/altconf-wil-shipley-git-document-format/
http://www.git-tower.com/learn/git/ebook
http://www.git-tower.com/
https://www.atlassian.com/git/tutorials
https://www.atlassian.com/git/
http://try.github.com/
https://github.com/

Coming Up Next

* Lecture 4: GitHub and Markdown

* Lecture 5: Introduction to Software Engineering

- Homework 1 is due by the start of Lecture 5 (next Tuesday)

© Kenneth M. Anderson, 2016

37

