
© Kenneth M. Anderson, 2016

Git

CSCI 5828: Foundations of Software Engineering

Lecture 03 — 08/30/2015

1



© Kenneth M. Anderson, 2016

Lecture Goals

• Present a brief introduction to git


• You will need to know git to work on your homeworks and essays

2



© Kenneth M. Anderson, 2016

Git and GitHub

• I’m asking that all essays this semester be uploaded to GitHub


• That means you need to be comfortable with the following technologies


• git


• GitHub


• Markdown


• You should also be comfortable with


• HTML5 and CSS (if you want to deliver your presentation via HTML)


• Advanced users can get more out of GitHub’s website support if they know


• Jekyll


• Today, I will provide a brief intro to git

3



© Kenneth M. Anderson, 2016

git

• git is a distributed version control system


• <https://git-scm.com>


• git was developed by the linux community in 2005 to help manage the 
development of linux itself


• As a result, it needed to solve the problem of how to do version control of 
software systems consisting of 10,000s of files with 100s-1000s of 
developers all working on the project at once


• To install


• Head to the Downloads page of the site above, and follow the instructions


• On Mac OS X: first install homebrew: Details at <http://brew.sh>


• Then: brew install git

4

https://git-scm.com
http://brew.sh


© Kenneth M. Anderson, 2016

What is version control? (I)

• Just briefly, version control is keeping track of changes made to the files that 
make up a software system


• The concept of version can be applied to:


• a file:


• a Java file starts with some initial content, say a class


• you check that in; that’s version zero


• You then add a method to the class and check that change in


• that’s version one


• Most version control systems handle tracking the versions of files 
automatically; instead developers focus on changes to “sets of files”

5



© Kenneth M. Anderson, 2016

What is version control? (II)

• The concept of version is thus typically applied to:


• a set of files:


• Your project starts with one source code file and a build script


• you check that in; that’s version zero


• You then add a second file, rename the original file, and modify the 
build script


• you check in all three changes; that’s version one


• A change to a set of files that gets checked in is called a “commit”

6



© Kenneth M. Anderson, 2016

Versions form a line (called a “branch”)

7

0

Repo created with one 
Java source file and a 
build script

1 2

New Java file added; 
original java file 
renamed; build script 
updated

Three new Java files 
added; resource 
directory created with 
three images; two 
previous Java files 
updated



© Kenneth M. Anderson, 2016

Lines are called “branches” because that’s what 
they do

8

0 1 2

3 4

5

bug discovered; 
bug fix branch 

created
first attempt 

to fix it

new method 
added

bug fixed

6

bug fix 
merged

development 
continues

The main branch of development is known as the “master” 
branch. This is a convention. You could call it “frog-blast-the-vent-
core” and your version control system wouldn’t care

http://marathongame.wikia.com/wiki/Frog_Blast_the_Vent_Core


© Kenneth M. Anderson, 2016

Two Key Features of git (I)

• git has two key features that enabled its success


• Branches are quick and “cheap” to create 

• In other version control systems, branches are “expensive” and hard to 
deal with; they discourage branch creation


• With git, you are encouraged to branch early and branch often


• merges happen automatically most of the time


• If there’s a conflict, git has a human sort it out


• To master git, you need to become familiar and comfortable with branches 
and their associated operations

9



© Kenneth M. Anderson, 2016

Two Key Features of git (II)

• git has two key features that enabled its success


• Every copy of the repository is “official”; 

• There is no one “centralized” repo that is the official one


• each copy has the complete contents of the repo when it is first 
created


• contents can drift, of course, as developers perform work on their 
local copies, but they can then be easily synchronized


• How a group synchronizes their repositories is left up to them


• because of this git supports a wide range of workflows that can 
support the work of 1 developer, or 5 developers, or even 1000s of 
developers. See <https://git-scm.com/about/distributed> for example 
workflows

10

https://git-scm.com/about/distributed


© Kenneth M. Anderson, 2016

Key Concepts to Understand git (I)

11

RepositoryWorking 
Directory

Staging 
Area

git checkout …

git add … git commit

<after a commit>

modify 
files as 
needed

a.k.a. "the index"



© Kenneth M. Anderson, 2016

Key Concepts to Understand git (II)

12

0 1 2

3 4

5 6

Branches are just pointers; there is one default pointer called HEAD that 
(usually) just points at the latest commit of the current branch; the other 
branch pointers point at the latest commit of their respective branches

master

HEADbug-fix

The diagram above shows a situation in which the user has checked out 
the master branch. The bug-fix branch points at its last commit and 

both HEAD and master happen to be pointing at the same thing.



© Kenneth M. Anderson, 2016

Key Concepts to Understand git (II)

13

0 1 2

3 4

5 6

If I check out a specific commit, say commit 2, then HEAD moves to 
point at that commit but master and bug-fix do not move.

masterHEAD

bug-fix

I might do this if I wanted to then create a branch that used 
commit 2 as a starting point.



© Kenneth M. Anderson, 2016

Common git Commands (I)

• To create a new git repository


• git init


• This command works in an empty directory or in an existing project directory


• It creates a .git subdirectory in that directory where it stores all of the 
information about the repository


• On Unix-based systems calling it “.git” makes the directory “invisible”


• If you have a set of changes “staged”, you can commit them to the repository 
with the command


• git commit


• An editor will open where you can type the log message for the commit

14



© Kenneth M. Anderson, 2016

Common git Commands (II)

• To view the current status of a repo


• git status


• This will show what branch you are on, what changes there are in the working 
directory, and what changes have been staged


• If you have a modified file or a new directory that you want to “stage”:


• git add <fileOrDirName>


• If you want to get rid of a file or directory:


• git rm <fileOrDirName>


• If you want to rename a file or directory:


• git mv <oldFileOrDirName> <newFileOrDirName>

15



© Kenneth M. Anderson, 2016

Common git Commands (III)

• To see the current branches:


• git branch


• To create a new branch


• git checkout -b <newBranchName>


• To switch to an existing branch


• git checkout <branchName>


• To push commits to a remote repository


• git push


• To retrieve commits from a remote repository


• git pull

16



© Kenneth M. Anderson, 2016

Example

• Let’s step through a simple example that recreates the graph of slide 13


• Word of warning: git does not generate simple integers for its version 
numbers. Instead, commit version numbers look like this:


• fa840cc7775b1d2daa51dd6e4b0c66384d3554e3


• These “hashes” allow git to uniquely identify files and commits


• I don’t have time to cover the cool things that the use of these hashes 
enable for git; if you are curious, this book has a great explanation


• Version Control with Git, 2nd Edition


• by Jon Loeliger, Matthew McCullough


• Publisher: O’Reilly; 2012

17

http://shop.oreilly.com/product/0636920022862.do


© Kenneth M. Anderson, 2016

Step 1: Create Repo

• Create a new directory: example_project


• mkdir example_project


• Enter that directory and create a file called README.md


• cd example_project; vi README.md


• Edit the file to contain the following contents


• Save it. At the prompt, type “git init”

18



© Kenneth M. Anderson, 2016

Current Status

19

We’ve created a repository but we haven’t committed anything to it. We 
have one file in our working directory that git knows nothing about. It 
refers to that file as being “untracked”.



© Kenneth M. Anderson, 2016

Step 2: Track a file

• Let’s tell git to track this file


• git add README.md


• Check the status


• git status

20

The file is now in 
the staging area 
and is ready to be 
committed.



© Kenneth M. Anderson, 2016

Step 3: Submit First Commit

• Let’s commit this file to the repository


• git commit -m “Initial Commit”


• Our change to the repository was “saved”. It’s now permanent.


• Our working directory is back to being “clean” that is unchanged from the 
current commit.

21



© Kenneth M. Anderson, 2016

How do we see our commit? (I)

• git log // show a list of commits made to the repository


• From this we see that our commit’s “name” is


• d519e5e0d11eb1c56e79be1d14bf9915891d4391


• And, it’s log message was “Initial Commit”


• Note: “git log” is infinitely customizable; see “man git-log” for details 

22



© Kenneth M. Anderson, 2016

How do we see our commit? (II)

• git show // show info on the most recent commit


23



© Kenneth M. Anderson, 2016

Step 4: Add Commits

• Create two more commits on the master branch


• Edit README.md to contain a new line: “First Edit”


• Save it. git add; git commit -m “Second commit”


• Edit README.md to contain a new line: “Second Edit”


• Save it. git add; git commit -m “Third commit”


• Our version tree now looks like this

24

name of branch

first commit
second commit
third commit

This visualization produced by 
GitUp <http://gitup.co>

http://gitup.co


© Kenneth M. Anderson, 2016

Reminder

• Recall that we are trying to create this graph


• So, it’s time to create a branch and add commits “3” and “4”. (We currently 
have commits “0”, “1”, and “2”.

25

0 1 2

3 4

5 6

masterHEAD

bug-fix



© Kenneth M. Anderson, 2016

Step 5: Create a Branch (I)

• We want to create a branch off the very first commit


• As a result, we need to jump back to it


• We do that with the checkout command


• git checkout d519e5e0d11eb1c56e79be1d14bf9915891d4391


• New version tree


• Check README.md… our two edits are gone!

26



© Kenneth M. Anderson, 2016

Step 5: Create a Branch (II)

• Create the bug-fix branch


• git checkout -b bug-fix


• The branch is created and conceptually the HEAD is on that branch; however, 
we don’t have a new commit (yet), so HEAD is really just pointing at our initial 
commit but any new commits will be added to the “bug-fix” branch

27



© Kenneth M. Anderson, 2016

Step 6: Add Commits

• Create two commits on the bug-fix branch


• Edit README.md to contain a new line: “Third Edit”


• Save it. git add; git commit -m “Fourth commit”


• Edit README.md to contain a new line: “Fourth Edit”


• Save it. git add; git commit -m “Fifth commit”


• Our version tree now looks like this

28

This visualization produced by 
GitUp <http://gitup.co>

Note: GitUp flipped the branches 
when I added commits to the 
bug-fix branch

http://gitup.co


© Kenneth M. Anderson, 2016

Step 7: Time to merge (I)

• Merging branches is easy


• and many times Git can perform the merge automatically


• If it cannot, you enter a “merge conflict” state and have to help git resolve 
the conflict


• Let’s see what happens when we try to merge our “bug fix” changes into our 
master branch


• The rules you need to know:


• checkout the branch that should receive the changes


• Invoke “git merge” and enter the name of the branch that has the changes 
to be merged

29



© Kenneth M. Anderson, 2016

Step 7: Time to merge (II)

• git checkout master


• git merge bug-fix


• CONFLICT: git can’t figure out how to create a README.md file that 
contains all of our changes; (we edited the same two lines of the file)

30



© Kenneth M. Anderson, 2016

Step 8: Fix the Conflict

• Take a look at the README.md file


• Delete the lines that git added; git add README.md;


• git commit -m “Fixed Conflict”

31



© Kenneth M. Anderson, 2016

The Result?

32

0 1 2

3 4

5

masterHEAD

bug-fix

Our current tree looks like the graph on the left. 
That corresponds to the graph below.

Only two things left to do to recreate the graph from slide 13. 



© Kenneth M. Anderson, 2016

Step 9: Add a new commit

• Add a new commit


• Edit README.md to contain a new line: “Fifth Edit”


• Save it. git add; git commit -m “Seventh commit”


• The version tree now looks like this


• One more thing to do…

33



© Kenneth M. Anderson, 2016

Step 10: Move head to third commit

• Use git log to discover the name of the third commit


• 4b775be5659c5619b74ba856ad82720fed9a2b0f


• Check it out


• git checkout 4b775be5659c5619b74ba856ad82720fed9a2b0f


• The version tree now looks like this

34

Follow all of these steps and convince yourself 
that the final state of the repo is equal to the 
graph we showed on slides 13 and 25.



© Kenneth M. Anderson, 2016

Step 11: Leave the repo in a good state

• git checkout master


• Tell git to go back to the tip of the master branch


• git is now ready to receive new commits on that branch


• Final State

35

Note: this is equivalent to the graph from slide 12



© Kenneth M. Anderson, 2016

Only scratched the surface…

• There is still a LOT to learn about git


• Be mindful, git is very powerful; people use it for all sorts of things!


• I recommend


• Learn Version Control with Git from fournova, makers of Tower


• Become a git guru by Atlassian


• See also: Getting Git Right by Atlassian


• Try Git by GitHub, Inc.

36

https://realm.io/news/altconf-wil-shipley-git-document-format/
http://www.git-tower.com/learn/git/ebook
http://www.git-tower.com/
https://www.atlassian.com/git/tutorials
https://www.atlassian.com/git/
http://try.github.com/
https://github.com/


© Kenneth M. Anderson, 2016

Coming Up Next

• Lecture 4: GitHub and Markdown


• Lecture 5: Introduction to Software Engineering


• Homework 1 is due by the start of Lecture 5 (next Tuesday)

37


