
© Kenneth M. Anderson, 2016

No Silver Bullet

CSCI 5828: Foundations of Software Engineering

Lecture 02 — 08/25/2016

1

© Kenneth M. Anderson, 2016

Lecture Goals

• Introduce Fred Brook’s No Silver Bullet

• Classic essay by Fred Brooks discussing “Why is SE so hard?”

2

Image © Bryan M. Mathers; Used via a CC License

http://bryanmmathers.com/no-silver-bullet/
http://creativecommons.org/licenses/by-nc-nd/4.0/

© Kenneth M. Anderson, 2016

No Silver Bullet

• “There is no single development, in either technology or management
technique, which by itself promises even one order-of-magnitude
improvement within a decade in productivity, in reliability, in simplicity.”

• — Fred Brooks, 1986

• i.e. There is no magical cure for the “software crisis”

• NOTE: From this statement you can infer the definition of a “silver bullet”:

• A single technique or technology that by itself can deliver one order-of-
magnitude improvement to some aspect of software development.

• Note: one order of magnitude is the same as saying a 10x improvement

3

© Kenneth M. Anderson, 2016

Why? Essence and Accidents

• Brooks divides the problems facing software engineering into two categories

• essence: difficulties inherent, or intrinsic, in the nature of software

• accidents: difficulties related to the production of software

• Brooks argues that most techniques attack the accidents of software
engineering

4

© Kenneth M. Anderson, 2016

An Order of Magnitude

• In order to improve software development by a factor of 10

• first, the accidents of software engineering would have to account for
90% of the overall effort

• second, tools would have to reduce accidental problems to zero

• Brooks doesn't believe that the former is true…

• and the latter is nigh impossible because each new tool or technique
solves some problems while introducing others

5

© Kenneth M. Anderson, 2016

The Essence

• Brooks divides the essence into four subcategories

• complexity

• conformity

• changeability

• invisibility

• Lets consider each in turn

6

© Kenneth M. Anderson, 2016

Complexity (I)

• Software entities are amazingly complex

• No two parts (above statements) are alike

• Contrast with materials in other domains

• Large software systems have a huge number of states

• Brooks claims they have an order of magnitude more states than
computers (i.e. hardware) do

• As the size of a system increases, both the number and types of parts
increase exponentially

• the latter increase is the most significant

7

© Kenneth M. Anderson, 2016

Complexity (II)

• You can't abstract away the complexity of the application domain. Consider:

• air traffic control, international banking, avionics software

• These domains are intrinsically complex and this complexity will appear in the
software system as designers attempt to model the domain

• Complexity also comes from the numerous and tight relationships between
heterogeneous software artifacts such as specs, docs, code, test cases,
etc.

8

© Kenneth M. Anderson, 2016

Complexity (III)

• Problems resulting from complexity

• difficult team communication

• product flaws; cost overruns; schedule delays

• personnel turnover (loss of knowledge)

• unenumerated states (lots of them)

• lack of extensibility (complexity of structure)

• unanticipated states (security loopholes)

• project overview is difficult

9

© Kenneth M. Anderson, 2016

Conformity (I)

• A lot of complexity facing software engineers is arbitrary

• Consider designing a software system to support an existing business
process when a new VP arrives at the company

• The VP decides to “make a mark” on the company and changes the
business process

• Our system must now conform to the (from our perspective) arbitrary
changes imposed by the VP

10

© Kenneth M. Anderson, 2016

Conformity (II)

• Other instances of conformity

• Adapting to a pre-existing environment

• such as integrating with legacy systems

• and if the environment changes (for whatever reason), you can bet that
software will be asked to change in response

• Implementing regulations or rules that may change from year to year

• Dealing with a change in vendor imposed by your customer

• Main Point: It is almost impossible to plan for arbitrary change;

• instead, you just have to wait for it to occur and deal with it when it
happens

11

© Kenneth M. Anderson, 2016

Changeability (I)

• Software is constantly asked to change

• Other things are too, however, manufactured things are rarely changed
after they have been created

• instead, changes appear in later models

• automobiles are recalled only infrequently

• buildings are expensive to remodel

12

© Kenneth M. Anderson, 2016

Changeability (II)

• With software, the pressure to change is greater

• in a project, it is functionality that is often asked to change and software
EQUALS functionality (plus its malleable)

• clients of a software project often don't understand enough about software
to understand when a change request requires significant rework of an
existing system

• Contrast with more tangible domains

• Imagine asking for a new layout of a house after the foundation has
been poured

13

© Kenneth M. Anderson, 2016

Invisibility (I)

• Software is, by its nature, invisible and intangible; it is difficult to design
graphical displays of software that convey meaning to developers

• Contrast to blueprints: here geometry can be used to identify problems
and help optimize the use of space

• But with software, its difficult to reduce it to diagrams

• UML contains 13 different diagram types (!)

• to model class structure, object relationships, activities, event handling,
software architecture, deployment, packages, etc.

• The notations of the different types almost never appear in the same
diagram

• they really do document 13 different aspects of the software system!

14

© Kenneth M. Anderson, 2016

Invisibility (II)

• Hard to get both a “big picture” view as well as details

• Hard to convey just one issue on a single diagram

• instead multiple concerns crowd and/or clutter the diagram hindering
understanding

• This lack of visualization deprives the engineer from using the brain's
powerful visual skills

15

© Kenneth M. Anderson, 2016

What about “X”?

• Brooks argues that past breakthroughs solve accidental difficulties

• High-level languages

• Time-Sharing

• Programming Environments

• OO Analysis, Design, Programming

• …

• This is one of my favorite sections of the article; Brooks is not shy about
sharing his opinion about some of these techniques!

16

© Kenneth M. Anderson, 2016

Promising Attacks on the Essence

• Buy vs. Build

• Don't develop software when you can avoid it

• Rapid Prototyping

• Use to clarify requirements

• Incremental Development

• don't build software, grow it

• Great designers

• Be on the look out for them, when you find them, don't let go!

17

© Kenneth M. Anderson, 2016

No Silver Bullet, Take 2

• Brooks reflects on No Silver Bullet‡, ten years later

• Lots of people have argued that their methodology, technique, or tool is
the silver bullet for software engineering

• If so, they didn't meet the deadline of 10 years or the target of a 10
times improvement in the production of software

• Others misunderstood what Brooks calls “obscure writing”

• e.g., “accidental” did not mean “occurring by chance”;

• instead, he meant that the use of technique A for benefit B
unfortunately introduced problem C into the process of software
development

18

‡ This reflection appears in The Mythical Man-Month, 20th Anniversary Edition

© Kenneth M. Anderson, 2016

The Size of Accidental Effort

• Some people misunderstood his point with the 90% figure

• Brooks doesn't actually think that accidental effort is 90% of the job

• its much smaller than that

• As a result, reducing it to zero (which is impossible) will not give you an order
of magnitude improvement

19

© Kenneth M. Anderson, 2016

Obtaining the Increase

• Some people interpreted Brooks as saying that the essence could never be
attacked

• That's not his point; he said that no single technique could produce an
order of magnitude increase by itself

• He argues instead that several techniques in tandem could achieve it
but that requires industry-wide enforcement and discipline

• Brooks states:

• “We will surely make substantial progress over the next 40 years; an order
of magnitude improvement over 40 years is hardly magical…”

20

© Kenneth M. Anderson, 2016

Quiz Yourself

• Essence or Accident?

• A bug in a financial system is discovered that came from a conflict in state/
federal regulations on one type of transaction

• A program developed in two weeks using a whiz bang new application
framework is unable to handle multiple threads since the framework is not
thread safe

• A new version of a compiler generates code that crashes on 32-bit
architectures; the previous version did not

• A fickle customer submits 10 change requests per week after receiving the
first usable version of a software system

21

© Kenneth M. Anderson, 2016

Coming Up Next

• Lecture 2a: Git

• Homework 1 is due by the start of Lecture 4 (next Thursday)

• See class website for details

22

