
© Kenneth M. Anderson, 2016

Course Overview

CSCI 5828: Foundations of Software Engineering

Lecture 01 — 08/23/2015

1

© Kenneth M. Anderson, 2016 2

All problems in computer science can be solved by another level of indirection.

David Wheeler

© Kenneth M. Anderson, 2016 3

© Kenneth M. Anderson, 2016 4

Software can change the world (rapidly)!

© Kenneth M. Anderson, 2016 5

Software can change the world (rapidly)!

© Kenneth M. Anderson, 2016 6

Software Engineering Can Be Difficult!

Original Comic located at https://xkcd.com/1425/

https://xkcd.com/1425/
https://xkcd.com/1425/

© Kenneth M. Anderson, 2016

Software Engineering is Important

7

If we fail to our job well, people are negatively impacted

© Kenneth M. Anderson, 2016

Goals

• Present a fundamental introduction to the field of software engineering

• Present brief history and foundational theory of software engineering

• Survey software engineering concepts, terminology, and techniques

• Take an in-depth look at two important software engineering concepts

• designing and implementing concurrent software systems

• designing and implementing serverless single-page web applications

• with your help (more on that later) explore a wide range of software
engineering techniques and tools, software frameworks, and more

8

© Kenneth M. Anderson, 2016

About Me

• Associate Professor

• Ph.D. at UC Irvine

• 18 Years at CU;

• Start of my 37th Semester!

• 10th time teaching this class

• Research Interests

• Software & Web Engineering

• Software Architecture

• Crisis Informatics

9

© Kenneth M. Anderson, 2016

Office Hours

• By appointment only

• Please send me e-mail to schedule a
time to stop by

• My office is located in the Dean's
Office on the first floor of the
Engineering Center

• The room number is ECAD 101

10

© Kenneth M. Anderson, 2016

Class Website

11

<http://www.cs.colorado.edu/~kena/classes/5828/f16/>

http://www.cs.colorado.edu/~kena/classes/5828/f16/

© Kenneth M. Anderson, 2016

Check the website every day! (I’m serious)

12

• The website is your source for

• the class schedule, homework assignments, announcements, etc.

• To turn assignments in and to distribute some class materials, I will make use
of D2L, which you can access via MyCUInfo, and GitHub.

• If you haven't done so, send me your GitHub user id.

• The repo that we'll be using on GitHub is private

• For you to access it, I need to add you as a collaborator

© Kenneth M. Anderson, 2016

Need to learn Git and GitHub? Learn from the Best!

13

https://github.com/blog/2227-patchwork-boulder

August 31, 6:30-9:30 pm
GitHub's Boulder Office, 1300 Walnut St, Suite 101, Boulder, CO 80302

© Kenneth M. Anderson, 2016

Warning! Syllabus is Preliminary

• Why?

• I don't know how long it will take me to cover a given set of material

• In some lectures, I'll run out of time and need to pick up where I left off in
the next session

• As a result, a given lecture may cover multiple topics or only part of one

• Be flexible and go with the flow!

14

© Kenneth M. Anderson, 2016

Textbooks

15

Available at <https://pragprog.com>

<http://www.cs.colorado.edu/~kena/classes/5828/f16/textbooks.html>

https://pragprog.com
http://www.cs.colorado.edu/~kena/classes/5828/f16/textbooks.html

© Kenneth M. Anderson, 2016

Three Main Topics

• Introduction to Software Engineering

• Overview, history, concepts, techniques, etc.

• Design and Implementation of Concurrent Systems

• The days of waiting for faster hardware is (long) gone

• To make software systems that perform efficiently, you need to incorporate
concurrency into your system designs

• Design and Implementation of Serverless Single Page Web Apps

• PLUS: As a class, we will be exploring lots of software engineering
techniques, tools, methodologies, etc.

16

© Kenneth M. Anderson, 2016

Course Evaluation

• Your grade will be determined by your work on

• Homeworks and Semester Project (40%)

• Essays (40%)

• Quizzes (20%)

• Semester Project will be integrated into the Homeworks

• Essays will be submitted via GitHub

• Quizzes will be taken on D2L

17

© Kenneth M. Anderson, 2016

Essays

• As a class, we are going to perform an in-depth exploration of software
engineering topics. You are going to be creating files within our Github repo
that provide notes, code, information, and examples of

• software engineering methodologies

• software engineering techniques, tools, and frameworks

• programming languages

• etc.

• You will be reviewing and critiquing the work of your peers throughout the
semester, creating issues and/or pull requests

• You will create thirteen of these presentations, during weeks 2-14.

• More information about this on Thursday

18

© Kenneth M. Anderson, 2016

Honor Code

• You are allowed to work together in teams of 4 to 5 people on

• the homeworks

• The quizzes and essays are individual work

• The Student Honor Code applies to classes in all CU schools and colleges.
You can learn about the honor code at:

• <http://www.colorado.edu/academics/honorcode/>.

19

http://www.colorado.edu/academics/honorcode/

© Kenneth M. Anderson, 2016

Late Policy

• Assignments submitted late incur a 15% penalty

• You may submit a homework assignment up to one week late

• after that the submission will not be graded and you’ll receive 0 points
for it

• The quizzes and the essays may not be submitted late

• With respect to the essays, there are two parts

• creation of an essay

• review of other student essays

• if you're late with your essay, you will impact the work of other
students

20

© Kenneth M. Anderson, 2016

Syllabus Statements

• The University asks that various policies be presented to students at the start
of each semester. These policies include

• Disability Accommodations

• Religious Observances

• Classroom Behavior

• Discrimination and Harassment

• Honor Code

• See <http://www.cs.colorado.edu/~kena/classes/5828/f16/syllabus-
statements.html> for more details

21

http://www.cs.colorado.edu/~kena/classes/5828/f16/syllabus-statements.html

© Kenneth M. Anderson, 2016

Programming Languages

• Code examples this semester will be drawn from a number of languages

• Java, Objective-C, Clojure, Elixir, C, Ruby, Python, possibly more!

• Within assignments this semester, we'll be making heavy use of

• Elixir

• Javascript

• HTML

• CSS

• We'll be reviewing these technologies throughout the semester

22

© Kenneth M. Anderson, 2016

What do you know about Software Engineering?

• Fire up your web browsers and head to

• http://bit.ly/2bFkR75

• Let’s spend some time finding out what people in the class know about
software engineering

• then we’ll look at some of my definitions and perspectives

23

http://bit.ly/2bFkR75

© Kenneth M. Anderson, 2016

What is Software Engineering

• Software

• Computer programs and their related artifacts

• e.g. requirements documents, design documents, test cases, UI
guidelines, usability tests, …

• Engineering

• The application of scientific principles in the context of practical
constraints

• Consider: Chemist versus Chemical Engineer

• Software engineers have a similar relationship with computer scientists

• Software engineering has a similar relationship with computer science

24

© Kenneth M. Anderson, 2016

Emphasizing the Point

• Consider this story on Slashdot from 2012:

• IBM Shrinks Bit Size To 12 Atoms

• From the story:

• “IBM researchers say they've been able to shrink the number of iron atoms
it takes to store a bit of data from about one million to 12… Andreas
Heinrich, who lead the IBM Research team on the project for five years,
said the team used the tip of a scanning tunneling microscope and
unconventional antiferromagnetism to change the bits from zeros to
ones… That solved a theoretical problem of how few atoms it could take
to store a bit; now comes the engineering challenge: how to make a
mass storage device perform the same feat as a scanning tunneling
microscope.

25

http://hardware.slashdot.org/story/12/01/12/206224/ibm-shrinks-bit-size-to-12-atoms

© Kenneth M. Anderson, 2016

What is Software Engineering

• What is Engineering?

• Engineering is a sequence of well-defined, precisely-stated, sound steps,
which follow a method or apply a technique based on some combination of

• theoretical results derived from a formal model

• empirical adjustments for unmodeled phenomenon

• rules of thumb based on experience

• This definition is independent of purpose

• i.e. engineering can be applied to many disciplines

26

© Kenneth M. Anderson, 2016

What is Software Engineering

• Software engineering is that form of engineering that applies…

• a systematic, disciplined, quantifiable approach,

• the principles of computer science, design, engineering, management,
mathematics, psychology, sociology, and other disciplines…

• to creating, developing, operating, and maintaining cost-effective, reliably
correct, high-quality solutions to software problems. (Daniel M. Berry)

• With respect to disciplined

• Consider: Difference between professional musician and amateur musician

27

© Kenneth M. Anderson, 2016

What is Software Engineering?

• Issues of Scale

• Software engineers care about developing techniques that enable the
construction of large scale software systems

• Issues of Communication

• Consider the set of tools provided by sites like Rally, Fogbugz, or
Assembla.com

• Issues of Regulation

• Other engineering disciplines require certification; should SE?

• Issue of Design

• dealing with integration of software/hardware/process

28

http://www.rallydev.com/agile_products/editions/community/
http://www.fogcreek.com/FogBUGZ/
http://www.assembla.com/
http://www.apple.com/macbookair/

© Kenneth M. Anderson, 2016

Types of Software Development

• Desktop Application Development

• Contract Software Development / Consulting

• Mobile Application Development

• Web Engineering (Development of Web Applications)

• Military Software Development

• Open Source Software Development

• Others??

• These categories are not orthogonal!

29

© Kenneth M. Anderson, 2016

Jobs related to Software Engineering

• Software Developer

• Software Engineer

• SQA (Software Quality Assurance)
Engineer

• Usability Engineer

• requires strong HCI/CSCW
background

• Systems Analyst

• professional requirements gather
and/or designer

• DBA

• System administrator / DevOps

• Software Architect

• Software Consultant

• Web Designer

• Build Manager / Configuration
Management Engineer

• Systems Engineer

• Computer Graphics Animator

30

© Kenneth M. Anderson, 2016

Core Principles (What I call “The Big Three”)

• Specification

• Software engineers specify everything

• requirements, design, code, test plans, development life cycles

• What makes a good specification?

• Translation

• The work of software engineering is one of translation, from one
specification to another; from one level of abstraction to another; from one
set of structures to another (e.g. problem/design decomposition)

• Iteration

• The work of software engineering is done iteratively; step by step until we
are “done”

31

© Kenneth M. Anderson, 2016

These Core Principles are Everywhere

• You will find these principles in all things related to software engineering

• its techniques & tools

• its development life cycles

• its practices

• And the most important part of software engineering?

• The people who perform it

• Ultimately, software engineering comes down to the people involved

• the customers, the developers, the designers, the testers, the marketers,
etc.; You’ll find the best development projects are conversations

32

© Kenneth M. Anderson, 2016

Our primary tool?

• Abstractions

• When it comes down to it, software engineers solve problems by

• developing abstractions that break the problem down into something
that is understandable

• and/or

• by using abstractions developed by others

• The file system? An abstraction. A database? An abstraction. Twitter’s API?
An abstraction. Your own Employee class? An abstraction.

• It’s abstractions all the way down…

33

© Kenneth M. Anderson, 2016

Example Abstractions

• What does this abstraction let you do?

• Q: ^(.*?), (.*?)$

• R: \2 \1

• How about this one?

• history | grep brew

• find . -type f -name *.scala -print | wc -l

• How would you construct a social graph of two hops for a given set of user
ids?

• get_friends.rb: takes list of ids and provides list of ids followed by them

• get_followers.rb: takes list of ids and provides list of ids that follow them

• get_user_objects.rb: takes list of ids and provides user information for

each one

34

© Kenneth M. Anderson, 2016

Emphasizing the Point: Conversation is Key

• How do we understand the problem we’re trying to solve?

• Conversations with users and domain experts

• How do we understand an abstraction that someone else wrote?

• Conversations on-line with other developers or “with” the documentation

• How do we understand what abstraction we should write?

• Design Conversations

• How do we know if our abstraction is working?

• Testing (“Conversations with test cases”)

• etc.

35

© Kenneth M. Anderson, 2016

Software Engineering is Hard

• No doubt about it: software engineering is hard

• Projects are late, over budget, and deliver faulty systems

• See 1995 Standish Report for one summary of the problem

• Why?

• For insight, we will take a look at an article by Fred Brooks called No Silver
Bullet

• Please read it by Thursday’s lecture

• The paper is available on our private GitHub repo for the class

• (Yet another reason why I need your GitHub user id!)

36

http://net.educause.edu/ir/library/pdf/NCP08083B.pdf

© Kenneth M. Anderson, 2016

Questions?

37

© Kenneth M. Anderson, 2016

Coming Up Next

• Lecture 2

• No Silver Bullet

• Git and GitHub

• Homework 1 Assigned (Due next Tuesday)

38

