Data Parallelism

CSCI 5828: Foundations of Software Engineering
Lecture 27 — 12/01/2015

© Kenneth M. Anderson, 2015

(Goals

» Cover the material in Chapter 7 of the Concurrency Textbook
- Data Parallelism
» Using OpenCL to create parallel programs on the GPU

» Also look at two examples that use OpenCL and OpenGL together

© Kenneth M. Anderson, 2015

Data Parallelism

- Data Parallelism is an approach to concurrent programming that can perform
number crunching on a computer’'s GPU

* You typically create a bunch of arrays and load them onto the GPU
* You also create a “kernel”; a program that is loaded onto the GPU

* The kernel then applies the operations of its program to the elements of
the array in parallel.

* So, if you had two arrays of 1024 floating point numbers and you
wanted to multiply those arrays together, the GPU might be able to
perform that multiplication on all 1024 pairs “at once”

* In actuality, the kernel is transformed into a program for your
particular GPU that makes use of pipelining and multiple ALUs to
process the operation as efficiently as possible

© Kenneth M. Anderson, 2015

Pipelining (1)

* One way that data parallelism can be implemented is via pipelining
* intresult =13 * 2;

- We might think of the above multiplication as an atomic operation
* but on the CPU, at the level of “gates”, it takes several steps

- Those steps are typically arranged as a pipeline

Operand 1

\
_—
Operand 2

> > > B> F——Result

* In this example, if each step takes one clock cycle, it would take 5 clock
cycles to perform the multiplication

© Kenneth M. Anderson, 2015

- If we only sent two numbers to this pipeline, our code would be inefficient

* Instead, if we have lots of numbers to multiply, we can insert new numbers
to multiply at the start of the pipeline for each new clock cycle

Pipelining (1)

---86

a, |ag [ay |m
a7*b a6*b6 as*b a4*b4 > a3*b3
b, [bg | by | a,*b, | a,*b

* Here, arrays A and B are being multiplied and we’re inserting one new
element of each array into the start of the pipeline, each clock cycle

* 1000 numbers would take ~1000 clock cycles to multiply (rather than
5000)!

© Kenneth M. Anderson, 2015

ALUs (I)

* Arithmetic logic units (ALUs) perform computations for CPUs

- They take two inputs and perform a result Opera”‘y Opfra”dz

* Another way to perform parallel operations on a GPU is to: \/

» create a series of linked ALUs that compute a result

Result

- and combine it with a “wide bus” that allows multiple operands to be
fetched at the same time

© Kenneth M. Anderson, 2015

ALUs (Il

< oo N
VIV |y

| N =
VIV lyu

N o ©
VIV |y

— N (@)
UV |V

Z
(@
©)

S| o 2
C |0 |lo|mo
of N o 2
C|C | |mc
~N o O Y
C |0 |lo|mo
159B
C|C |0 |

b1
4002—6
oof N 5 2
O 10 |o |lo
[J
~N o O ¥
O 10 o |lo
1SOJB
O 10 |O |

© Kenneth M. Anderson, 2015

The Basics of OpenCL (l)

* The key to any OpenCL program is defining its work items
* In traditional approaches to concurrency, you have to

» create a bunch of threads and make sure that there is enough work to
do so that you fully utilize all of the cores on your system

 otherwise, you end up with poor performance as thread overhead
dominates your program’s run-time as opposed to actual work

» With OpenCL programs, the goal is to create lots of small work items

* The smaller the better, so that OpenCL can make use of pipelining and
multiple ACLs to maximally distribute the computations across all of the
cores in the GPU

© Kenneth M. Anderson, 2015

The Basics of OpenCL (ll)

* “multiplying two arrays” example inputA inputB output
- create one work item for each — work-item0 ——»
multiplication —— work-item 1 ——»
—— work-item 2 ——»

- depending on the structure of our
GPU, we might be able to perform all
of the multiplications with one
Instruction

—— work-item 1023 —»

- if not, we’d do as many
multiplications as possible at
once and then load the rest

* since it’s being done in
parallel, the number of
iInstructions will be drastically
less than doing the same
amount of work on the CPU

© Kenneth M. Anderson, 2015

The Basics of OpenCL (lll): Find the Platform

* OpenCL programs have a basic structure
* You first ask if a platform is available

« InC

ecl_platform_id platform;
e clGetPlatformIDs (1, &platform, NULL);

* |n Java

e CL.create();
e CLPlatform platform = CLPlatform.getPlatforms().get(0);

» Getting access to the platform object, allows you to look for devices

© Kenneth M. Anderson, 2015

The Basics of OpenCL (IV): Find the Devices

* Once you have the platform, you can locate a device to use

 InC

e cl_device_1id device;
e clGetDevicelDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

* |n Java

e List<CLDevice> devices =
platform.getDevices(CL_DEVICE_TYPE_GPU);

* Here, we are specifically asking for GPUs, but there can be more than one
type of device and we could ask for all of them (if needed)

» devices can also include the CPU and specialized OpenCL accelerators

© Kenneth M. Anderson, 2015 11

The Basics of OpenCL (V): Get a Context

* Once you have a device (or devices), you can create a context for execution
* InC
e cl _context context =
e clCreateContext (NULL, 1, &device, NULL, NULL, NULL);
 In Java
e CLContext context =

e CLContext.create(platform, devices, null, null, null);

« Contexts can be used to pull in other information for OpenCL, such as
OpenGL drawing environments (as we will see in a later example)

* but the primary use of a context is to create a queue for processing work
items

© Kenneth M. Anderson, 2015

12

The Basics of OpenCL (VI): Create a Queue

- Now we are ready to create a command queue
* InC

e cl_command_queue queue =
clCreateCommandQueue(context, device, 0, NULL);

* In Java
e CLCommandQueue queue =
e clCreateCommandQueue (context, devices.get(0), 0, null);

* We now have the ability to send commands to the device and get it to
perform work for us

* I’'m now going to switch to showing an example in C, we’ll return to the
Java example later

© Kenneth M. Anderson, 2015 13

The Basics of OpenCL (VIl): Compile a Kernel

* OpenCL defines a C-like language that allows work-items to be specified
- Programs written in this language are called kernels

- Before we can use our queue, we need to compile the kernel. It is this
step that creates a program that works with your specific GPU

e char* source = read_source(“multiply_arrays.cl");
e cl_program program =
e clCreateProgramWithSource(

e context, 1, (const char**)&source, NULL, NULL);
free(source);
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
cl_kernel kernel = clCreateKernel(program,
"multiply_arrays", NULL);

At the end of this step, we have our kernel in memory, ready to execute

* I'll show you the “multiply_arrays.cl” code in a moment

© Kenneth M. Anderson, 2015

14

The Basics of OpenCL (VIll): Create Buffers

« Kernels are typically passed buffers (i.e. arrays) of data that they operate on
e #define NUM_ELEMENTS 1024

e cl_float a[NUM_ELEMENTS], b[NUM_ELEMENTS];

e random_fill(a, NUM_ELEMENTS);
e random_fill(b, NUM_ELEMENTS);

e cl_mem inputA = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float) * NUM_ELEMENTS, a, NULL);

e cl_mem inputB = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float) * NUM_ELEMENTS, b, NULL);

e cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
sizeof(cl_float) * NUM_ELEMENTS, NULL, NULL);

» Here we create two C arrays, fill them with random numbers, and then copy
them into two OpenCL buffers. We also create a buffer to store the output

© Kenneth M. Anderson, 2015

15

The Basics of OpenCL (IX): Perform the Work

* Now, we need to pass the buffers to the kernel

e clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputA);
e clSetKernelArg(kernel, 1, sizeof(cl_mem), &inputB);
e clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);

* Perform the work

e size_t work_units = NUM_ELEMENTS;
e cLEnqueueNDRangeKernel(
queue, kernel, 1, NULL, &work_units, NULL, 0, NULL, NULL);

* Retrieve the results

e cl_float results[NUM_ELEMENTS];
e clLEnqueueReadBuffer (queue, output, CL_TRUE, 0,
sizeof(cl_float) * NUM_ELEMENTS, results, 0, NULL, NULL);

© Kenneth M. Anderson, 2015 16

The Basics of OpenCL (X): Clean Up

* Finally, we have to deallocate all OpenCL-related data structures

e clReleaseMemObject (inputA) ;

e clReleaseMemObject (inputB) ;

e clReleaseMemObject (output) ;

e clReleaseKernel (kernel);

e clReleaseProgram(program) ;

e clReleaseCommandQueue (queue) ;
e clLReleaseContext(context);

* Now, we’re ready to look at a kernel

© Kenneth M. Anderson, 2015

17

Our First Kernel: Multiply Arrays (1)

* Here’s a small kernel, written in OpenCL’s C-like language

__kernel void multiply_arrays(
__global const float* inputA,
__global const float* inputB,
__global float* output) {

int 1 = get_global_id(0);
output[i] = dnputA[i] * dnputB[1];
¥

* This is NOT C, it’s just designed to look like C.

« The OpenCL compiler can take this program and generate machine code

to run on a particular device (in this case a GPU) in a massively parallel
fashion

© Kenneth M. Anderson, 2015

18

Our First Kernel: Multiply Arrays (ll)

__kernel void multiply_arrays(
__global const float* 1inputA,
__global const float* inputB,
__global float* output) {

int 1 = get_global_id(0);
output[i] = dnputA[i] * dnputB[1];
¥

* We see that this kernel expects three inputs: each an array of floats
« Qur call to clSetKernelArg() on slide 16 assigns our buffers to these args
- All three of these arrays are stored in the GPU’s global memory

- To perform work, we find out what work item we are (get_global_id())
« We use that id to index into the arrays

- OpenCL will try to complete as many work items in parallel as it can

© Kenneth M. Anderson, 2015 19

The single threaded version”

« How do we decide if all this work is worth it

* Let’s compare the GPU version of the program with the single-threaded
version that runs on the CPU. Here it is

e for (int i = ©; 1 < NUM_ELEMENTS; ++7) {
e results[i] = a[i] * b[i];
o}

* (This code reuses the definitions of a, b, and results seen previously)

* The book shows how to profile OpenCL code (see Chapter 7 for details)

© Kenneth M. Anderson, 2015

20

The results?

* Multiply two arrays of 200,000 random float values

e Total (GPU): 1717845 ns
e Elapsed (GPU): 86000 ns <= how long did the multiplications take?
e Elapsed (CPU): 886752 ns <= single-threaded version

 The GPU version is ten times faster
* Finishing in .08 milliseconds

 The CPU finished in 0.8 milliseconds

» Worth it? Not for this simple program. But, in general, YES!

© Kenneth M. Anderson, 2015

21

Working in Multiple Dimensions

 Our first example showed how to operate on buffers that were the same
length and that had a single index to organize the work

« We can work with multiple dimensions (such as multiplying matrices) by
employing a common trick

- We store a multidimensional matrix into a linear array
* If we have a 2x2 matrix, we can store its values in a 4-element array

* We then use a “width” parameter and x,y coordinates to calculate where in
the linear array a particular value is stored. Rather than

- alx]ly] = 10
- We write

» a[x*width+y] =10

© Kenneth M. Anderson, 2015 22

Our Second Kernel: Matrix Multiplication

__kernel void matrix multiplication(uint widthA,
__global const float* inputA,
__global const float* inputB,
__global float* output) {

int i = get_global_id(0); Our work items have been

. . : . < : : :
int j = get_global_id(1); configured to have two dimensions
int outputWidth = get global size(0); The size of the Qutput

int outputHeight = get global size(l); <

int widthB = outputWidth; matrix was set as a global

variable.

float total = 0.0;
for (int k = 0; k < widthA; ++k) {
total += inputA[j * widthA + k] * inputB[k * widthB + i];
}
output[j * outputWidth + 1] = total;

© Kenneth M. Anderson, 2015 23

Configuring OpenCL to Work with this Kernel

size t work units[] = {WIDTH OUTPUT, HEIGHT OUTPUT};
CHECK STATUS(clEnqueueNDRangeKernel (queue, kernel, 2, NULL, work units,
NULL, ©, NULL, NULL));

To ensure our kernel has the information it needs, we have to
change how we add work items to the queue

The “2” tells OpenCL that the work items have two dimensions

The work_units array tells OpenCL the range of the two dimensions

© Kenneth M. Anderson, 2015

24

The results?

* The book multiplies a 200x400 matrix (of random floating point values) by a
300x200 matrix producing a 300x400 matrix as a result

e Total (GPU): 4899413 ns
e Elapsed (GPU): 3840000 ns <= 78% of the time spent multiplying
e Elapsed (CPU): 65459804 ns <= single-threaded version

* The GPU version is 17 times faster!
* Finishing in 3.84 milliseconds
* The CPU finished in 65.5 milliseconds
» Worth it? For a program that has to do a lot of these multiplications?

- YOU BET!

© Kenneth M. Anderson, 2015

25

OpenCL and OpenGL: Match Made in Heaven?

* One use of OpenCL code is to work with OpenGL to perform graphics-related
calculations on the GPU, freeing up the CPU to perform other operations

* OpenGL is a standard for creating 3D programs/animations

» Our book presents two OpenGL applications that make use of OpenCL to
perform operations on triangles

* In the first example, we create a “mesh” of triangles and use OpenGL to
display them

- we then send the vertices of the mesh to an OpenCL program that
multiplies there values by 1.01 increasing the spacing of the vertices by
1% on each iteration

 This has the visual effect of zooming in on the mesh

© Kenneth M. Anderson, 2015 26

Background (l)

* The mesh of triangles can be conceptualized like this

There’s an index buffer that captures
the existence of each index: O, 1, 2

There’s also a vertex buffer that
captures the position of each index:
Index 1 => {0, 0, O} l.e. X, v, Z

int vertexBuffer = glGenBuffers();
glBindBuffer(GL ARRAY BUFFER, vertexBuffer);
glBufferData(GL ARRAY BUFFER, mesh.vertices, GL DYNAMIC DRAW);

int indexBuffer = glGenBuffers();

glBindBuffer(GL ELEMENT ARRAY BUFFER, indexBuffer);
glBufferData(GL ELEMENT ARRAY BUFFER, mesh.indices, GL STATIC DRAW);

When we create the vertex buffer, we tell OpenGL that it will change

© Kenneth M. Anderson, 2015 27

Background (l1)

* Our kernel for zooming is simple

__kernel void zoom(_global float* vertices) {

unsigned int id = get global id(0);
vertices[id] *= 1.01;

}

» get each value, (X, v, z), and increase its size by 1%

© Kenneth M. Anderson, 2015

28

Background (lI)

* The key to making this work is to then associate an OpenGL buffer with an
OpenCL buffer

* In a loop do the following
- draw the OpenGL buffer
» associate the OpenGL buffer with an OpenCL buffer

- allow OpenCL to apply the kernel to the OpenCL buffer (which changes
the OpenGL buffer automatically)

- call “finish” to ensure that all OpenCL operations have completed

* OpenGL will then draw the new mesh, the next time through the loop

© Kenneth M. Anderson, 2015 29

Background (IV): In Code

while (!Display.isCloseRequested()) {
glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, planeDistance);
glDrawElements (GL TRIANGLE STRIP, mesh.indexCount, GL UNSIGNED SHORT, 0);

Display.update();

Util.checkCLError(clEnqueueAcquireGLObjects(queue, vertexBufferCL, null, null));
kernel.setArg(0, vertexBufferCL);

clEnqueueNDRangeKernel (queue, kernel, 1, null, workSize, null, null, null);
Util.checkCLError(clEnqueueReleaseGLObjects(queue, vertexBufferCL, null, null));
clFinish(queue);

DEMO

© Kenneth M. Anderson, 2015 30

Ripple (l)

* In the previous example, the z values were Iinitialized to zero
* And,0"1.01==0

* As a result, the “zoom” of the previous example was achieved by just spacing
out the triangles' x and y values until they were offscreen

* The second example is more interesting, the kernel targets the z value of a
triangle’s vertices

* As a result, it will morph the mesh into “3D shapes”

* And, just to be fancy, the program supports up to 16 ripples at a time!

© Kenneth M. Anderson, 2015

31

Ripple (I1)

- Each click on the mesh (up to 16), creates a “center point” for a wave that
ripples out over the mesh

* Our kernel looks at each vertex and calculates the impact of each ripple
on the z coordinate of that vertex, using the following equation and
conceptual model

2 2
—-Dr -W0o
z=Ae e cos(Frtd)
ripple center r/ : : :
— 1 e 3 A is the amplitude of the wave; D

vertex

IS the decay of the wave; W is the
width of the wave; F is the
frequency of the wave

© Kenneth M. Anderson, 2015 32

#define AMPLITUDE 0.1
#define FREQUENCY 10.0
#define SPEED 0.5
#define WAVE PACKET 50.0
#define DECAY RATE 2.0
__kernel void ripple(__global float* vertices,
__global float* centers,
__global long* times,
int num_centers,
long now) {
unsigned int id = get global id(0);
unsigned int offset = id * 3;
float x = vertices[offset];
float y = vertices[offset + 1];
float z = 0.0;

for (int 1 = 0; i < num centers; ++i) {
if (times[i] '= 0) {
float dx = x - centers[i * 2];
float dy = y - centers[i * 2 + 1];
float d = sqrt(dx * dx + dy * dy);
float elapsed = (now - times[i]) / 1000.0;
float r = elapsed * SPEED;
float delta = r - d;
z += AMPLITUDE *
exp(-DECAY RATE * r * r) *
exp(-WAVE PACKET * delta * delta) *
cos (FREQUENCY * M PI F * delta);
}
}
vertices[offset + 2] = z;

}

Ripple (IIl): The Kernel

Three arrays are passed along with two
parameters to each one-dimensional work item

Our id retrieves the vertex that we're working
on. The centers array contains the center point
of each ripple. The times array contains the time
each ripple was created. The now variable
contains the current time.

With that information, we can use the equation
on the previous slide, to update the z value for
each ripple

OpenCL ensures that ALL vertices are updated
IN PARALLEL. That’s the true power of this

approach. DEMO

© Kenneth M. Anderson, 2015

Summary

* We scratched the service of data parallelism and GPU programming with
OpenCL

» We looked at a range of examples of OpenCL kernels
* an abstract way of defining a “work item”

* This specification is compiled into code that performs the specified
operations on as many data points as possible in parallel

« We saw the power of this technigue by showing how OpenCL can support
the transformation of OpenGL objects, the GPU performs most of the
calculations, freeing up the CPU to handle other tasks

 This approach stands in contrast to the other concurrency alternatives
* our programs were all single threaded; instead we used the GPU to

perform calculations in parallel when it was needed

© Kenneth M. Anderson, 2015 34

Coming Up Next

* Lecture 28: Grand Central Dispatch

© Kenneth M. Anderson, 2015

35

