
© Kenneth M. Anderson, 2015

Data Parallelism

CSCI 5828: Foundations of Software Engineering

Lecture 27 — 12/01/2015

1

© Kenneth M. Anderson, 2015

Goals

• Cover the material in Chapter 7 of the Concurrency Textbook

• Data Parallelism

• Using OpenCL to create parallel programs on the GPU

• Also look at two examples that use OpenCL and OpenGL together

2

© Kenneth M. Anderson, 2015

Data Parallelism

• Data Parallelism is an approach to concurrent programming that can perform
number crunching on a computer’s GPU

• You typically create a bunch of arrays and load them onto the GPU

• You also create a “kernel”; a program that is loaded onto the GPU

• The kernel then applies the operations of its program to the elements of
the array in parallel.

• So, if you had two arrays of 1024 floating point numbers and you
wanted to multiply those arrays together, the GPU might be able to
perform that multiplication on all 1024 pairs “at once”

• In actuality, the kernel is transformed into a program for your
particular GPU that makes use of pipelining and multiple ALUs to
process the operation as efficiently as possible

3

© Kenneth M. Anderson, 2015

Pipelining (I)

• One way that data parallelism can be implemented is via pipelining

• int result = 13 * 2;

• We might think of the above multiplication as an atomic operation

• but on the CPU, at the level of “gates”, it takes several steps

• Those steps are typically arranged as a pipeline

• In this example, if each step takes one clock cycle, it would take 5 clock
cycles to perform the multiplication

4

Day 1: GPGPU Programming
Today we’ll see how to create a simple GPGPU program that multiplies two
arrays in parallel, and then we’ll benchmark it to see just how much faster
the GPU is than the CPU. First, though, we’ll spend a little time examining
what makes a GPU so powerful when it comes to number-crunching.

Graphics Processing and Data Parallelism
Computer graphics is all about manipulating data—huge amounts of data.
And doing it quickly. A scene in a 3D game is constructed from a myriad of
tiny triangles, each of which needs to have its position on the screen calculated
in perspective relative to the viewpoint, clipped, lit, and textured twenty-five
or more times a second.

The great thing about this is that although the amount of data that needs to
be processed is huge, the actual operations on that data are relatively simple
vector or matrix operations. This makes them very amenable to data paral-
lelization, in which multiple computing units perform the same operations
on different items of data in parallel.

Modern GPUs are exceptionally sophisticated, powerful parallel processors
capable of rendering billions of triangles a second. The good news is that
although they were originally designed with graphics alone in mind, their
capabilities have evolved to the point that they’re useful for a much wider
range of applications.

Data parallelism can be implemented in many different ways. We’ll look briefly
at a couple of them: pipelining and multiple ALUs.

Pipelining

Although we tend to think of multiplying two numbers as a single atomic
operation, down at the level of the gates on a chip, it actually takes several
steps. These steps are typically arranged as a pipeline:

Operand 1

Operand 2

Result

For the five-element pipeline shown here, if it takes a single clock cycle for
each step to complete, multiplying a pair of numbers will take five clock cycles.
But if we have lots of numbers to multiply, things get much better because
(assuming our memory subsystem can supply the data fast enough) we can
keep the pipeline full:

Chapter 7. Data Parallelism • 190

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2015

Pipelining (II)

• If we only sent two numbers to this pipeline, our code would be inefficient

• Instead, if we have lots of numbers to multiply, we can insert new numbers
to multiply at the start of the pipeline for each new clock cycle

• Here, arrays A and B are being multiplied and we’re inserting one new
element of each array into the start of the pipeline, each clock cycle

• 1000 numbers would take ~1000 clock cycles to multiply (rather than

5000)!

5

a7*b7 a6*b6 a5*b5 a4*b4 a3*b3

a1*b1 a2*b2b8b7b6 b9

a8a7a6 a9

So multiplying a thousand pairs of numbers takes a whisker over a thousand
clock cycles, not the five thousand we might expect from the fact that multi-
plying a single pair takes five clock cycles.

Multiple ALUs

The component within a CPU that performs operations such as multiplication
is commonly known as the arithmetic logic unit, or ALU:

Operand 1 Operand 2

Result

Couple multiple ALUs with a wide memory bus that allows multiple operands
to be fetched simultaneously, and operations on large amounts of data can
again be parallelized, as shown in Figure 12, Large Amounts of Data Paral-
lelized with Multiple ALUs, on page 192.

GPUs typically have a 256-bit or wider memory bus, allowing (for example)
eight or more 32-bit floating-point numbers to be fetched at a time.

A Confused Picture

To achieve their performance, real-world GPUs combine pipelining and multiple
ALUs with a wide range of other techniques that we’ll not cover here. By itself,
this would make understanding the details of a single GPU complex. Unfortu-
nately, there’s little commonality between different GPUs (even those produced
by a single manufacturer). If we had to write code that directly targeted a
particular architecture, GPGPU programming would be a nonstarter.

OpenCL targets multiple architectures by defining a C-like language that
allows us to express a parallel algorithm abstractly. Each different GPU

report erratum • discuss

Day 1: GPGPU Programming • 191

Prepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2015

ALUs (I)

• Arithmetic logic units (ALUs) perform computations for CPUs

• They take two inputs and perform a result

• Another way to perform parallel operations on a GPU is to:

• create a series of linked ALUs that compute a result

• and combine it with a “wide bus” that allows multiple operands to be
fetched at the same time

6

a7*b7 a6*b6 a5*b5 a4*b4 a3*b3

a1*b1 a2*b2b8b7b6 b9

a8a7a6 a9

So multiplying a thousand pairs of numbers takes a whisker over a thousand
clock cycles, not the five thousand we might expect from the fact that multi-
plying a single pair takes five clock cycles.

Multiple ALUs

The component within a CPU that performs operations such as multiplication
is commonly known as the arithmetic logic unit, or ALU:

Operand 1 Operand 2

Result

Couple multiple ALUs with a wide memory bus that allows multiple operands
to be fetched simultaneously, and operations on large amounts of data can
again be parallelized, as shown in Figure 12, Large Amounts of Data Paral-
lelized with Multiple ALUs, on page 192.

GPUs typically have a 256-bit or wider memory bus, allowing (for example)
eight or more 32-bit floating-point numbers to be fetched at a time.

A Confused Picture

To achieve their performance, real-world GPUs combine pipelining and multiple
ALUs with a wide range of other techniques that we’ll not cover here. By itself,
this would make understanding the details of a single GPU complex. Unfortu-
nately, there’s little commonality between different GPUs (even those produced
by a single manufacturer). If we had to write code that directly targeted a
particular architecture, GPGPU programming would be a nonstarter.

OpenCL targets multiple architectures by defining a C-like language that
allows us to express a parallel algorithm abstractly. Each different GPU

report erratum • discuss

Day 1: GPGPU Programming • 191

Prepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2015

ALUs (II)

7

a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

b1 b2 b3 b4
b5 b6 b7 b8
b9 b10 b11 b12
b13 b14 b15 b16

a9

a10

a11

a12

b9

b10

b11

b12

c1 c2 c3 c4
c5 c6 c7 c8
c9 c10 c11 c12
c13 c14 c15 c16

c9

c10

c11

c12

Figure 12—Large Amounts of Data Parallelized with Multiple ALUs

manufacturer then provides its own compilers and drivers that allow that
program to be compiled and run on its hardware.

Our First OpenCL Program
To parallelize our array multiplication task with OpenCL, we need to divide
it up into work-items that will then be executed in parallel.

Work-Items

If you’re used to writing parallel code, you will be used to worrying about the
granularity of each parallel task. Typically, if each task performs too little
work, your code performs badly because thread creation and communication
overheads dominate.

OpenCL work-items, by contrast, are typically very small. To multiply two
1,024-element arrays pairwise, for example, we could create 1,024 work-items
(see Figure 13, Work Items for Pairwise Multiplication, on page 193).

Your task as a programmer is to divide your problem into the smallest work-
items you can. The OpenCL compiler and runtime then worry about how best
to schedule those work-items on the available hardware so that that hardware
is utilized as efficiently as possible.

Chapter 7. Data Parallelism • 192

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2015

The Basics of OpenCL (I)

• The key to any OpenCL program is defining its work items

• In traditional approaches to concurrency, you have to

• create a bunch of threads and make sure that there is enough work to
do so that you fully utilize all of the cores on your system

• otherwise, you end up with poor performance as thread overhead
dominates your program’s run-time as opposed to actual work

• With OpenCL programs, the goal is to create lots of small work items

• The smaller the better, so that OpenCL can make use of pipelining and
multiple ACLs to maximally distribute the computations across all of the
cores in the GPU

8

© Kenneth M. Anderson, 2015

The Basics of OpenCL (II)

• “multiplying two arrays” example

• create one work item for each
multiplication

• depending on the structure of our
GPU, we might be able to perform all
of the multiplications with one
instruction

• if not, we’d do as many
multiplications as possible at
once and then load the rest

• since it’s being done in
parallel, the number of
instructions will be drastically
less than doing the same
amount of work on the CPU

9

inputA inputB output

work-item 0
work-item 1
work-item 2

work-item 1023

Figure 13—Work Items for Pairwise Multiplication

Optimizing OpenCL

You won’t be surprised to hear that the real-world picture isn’t quite this simple.
Optimizing an OpenCL application often involves thinking carefully about the available
resources and providing hints to the compiler and runtime to help them schedule
your work-items. Sometimes this includes restricting the available parallelism for
efficiency purposes.

As always, however, premature optimization is the root of all programming evil. In
the majority of cases, you should aim for maximum parallelism and the smallest
possible work-items and worry about optimization only afterward.

Kernels

We specify how each work-item should be processed by writing an OpenCL
kernel. Here’s a kernel that we could use to implement the preceding:

DataParallelism/MultiplyArrays/multiply_arrays.cl
__kernel void multiply_arrays(__global const float* inputA,

__global const float* inputB,
__global float* output) {

int i = get_global_id(0);
output[i] = inputA[i] * inputB[i];

}

This kernel takes pointers to two input arrays, inputA and inputB, and an output
array, output. It calls get_global_id() to determine which work-item it’s handling
and then simply writes the result of multiplying the corresponding elements
of inputA and inputB to the appropriate element of output.

To create a complete program, we need to embed our kernel in a host program
that performs the following steps:

report erratum • discuss

Day 1: GPGPU Programming • 193

Prepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2015

The Basics of OpenCL (III): Find the Platform

• OpenCL programs have a basic structure

• You first ask if a platform is available

• In C

• cl_platform_id platform;
• clGetPlatformIDs(1, &platform, NULL);

• In Java

• CL.create();
• CLPlatform platform = CLPlatform.getPlatforms().get(0);

• Getting access to the platform object, allows you to look for devices

10

© Kenneth M. Anderson, 2015

The Basics of OpenCL (IV): Find the Devices

• Once you have the platform, you can locate a device to use

• In C

• cl_device_id device;
• clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

• In Java

• List<CLDevice> devices =
platform.getDevices(CL_DEVICE_TYPE_GPU);

• Here, we are specifically asking for GPUs, but there can be more than one
type of device and we could ask for all of them (if needed)

• devices can also include the CPU and specialized OpenCL accelerators

11

© Kenneth M. Anderson, 2015

The Basics of OpenCL (V): Get a Context

• Once you have a device (or devices), you can create a context for execution

• In C

• cl_context context =

• clCreateContext(NULL, 1, &device, NULL, NULL, NULL);

• In Java

• CLContext context =

• CLContext.create(platform, devices, null, null, null);

• Contexts can be used to pull in other information for OpenCL, such as
OpenGL drawing environments (as we will see in a later example)

• but the primary use of a context is to create a queue for processing work
items

12

© Kenneth M. Anderson, 2015

The Basics of OpenCL (VI): Create a Queue

• Now we are ready to create a command queue

• In C

• cl_command_queue queue =
clCreateCommandQueue(context, device, 0, NULL);

• In Java

• CLCommandQueue queue =

• clCreateCommandQueue(context, devices.get(0), 0, null);

• We now have the ability to send commands to the device and get it to
perform work for us

• I’m now going to switch to showing an example in C, we’ll return to the
Java example later

13

© Kenneth M. Anderson, 2015

The Basics of OpenCL (VII): Compile a Kernel

• OpenCL defines a C-like language that allows work-items to be specified

• Programs written in this language are called kernels

• Before we can use our queue, we need to compile the kernel. It is this
step that creates a program that works with your specific GPU

• char* source = read_source(“multiply_arrays.cl");
• cl_program program =

• clCreateProgramWithSource(
• context, 1, (const char**)&source, NULL, NULL);

• free(source);
• clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
• cl_kernel kernel = clCreateKernel(program,
"multiply_arrays", NULL);

• At the end of this step, we have our kernel in memory, ready to execute

• I’ll show you the “multiply_arrays.cl” code in a moment

14

© Kenneth M. Anderson, 2015

The Basics of OpenCL (VIII): Create Buffers

• Kernels are typically passed buffers (i.e. arrays) of data that they operate on

• #define NUM_ELEMENTS 1024

• cl_float a[NUM_ELEMENTS], b[NUM_ELEMENTS];

• random_fill(a, NUM_ELEMENTS);
• random_fill(b, NUM_ELEMENTS);

• cl_mem inputA = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float) * NUM_ELEMENTS, a, NULL);

• cl_mem inputB = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float) * NUM_ELEMENTS, b, NULL);

• cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
sizeof(cl_float) * NUM_ELEMENTS, NULL, NULL);

• Here we create two C arrays, fill them with random numbers, and then copy
them into two OpenCL buffers. We also create a buffer to store the output

15

© Kenneth M. Anderson, 2015

The Basics of OpenCL (IX): Perform the Work

• Now, we need to pass the buffers to the kernel

• clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputA);
• clSetKernelArg(kernel, 1, sizeof(cl_mem), &inputB);
• clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);

• Perform the work

• size_t work_units = NUM_ELEMENTS;
• clEnqueueNDRangeKernel( 
 queue, kernel, 1, NULL, &work_units, NULL, 0, NULL, NULL);

• Retrieve the results

• cl_float results[NUM_ELEMENTS];
• clEnqueueReadBuffer(queue, output, CL_TRUE, 0,
sizeof(cl_float) * NUM_ELEMENTS, results, 0, NULL, NULL);

16

© Kenneth M. Anderson, 2015

The Basics of OpenCL (X): Clean Up

• Finally, we have to deallocate all OpenCL-related data structures

• clReleaseMemObject(inputA);
• clReleaseMemObject(inputB);
• clReleaseMemObject(output);
• clReleaseKernel(kernel);
• clReleaseProgram(program);
• clReleaseCommandQueue(queue);
• clReleaseContext(context);

• Now, we’re ready to look at a kernel

17

© Kenneth M. Anderson, 2015

Our First Kernel: Multiply Arrays (I)

• Here’s a small kernel, written in OpenCL’s C-like language

__kernel void multiply_arrays(
__global const float* inputA,
__global const float* inputB,
__global float* output) {
int i = get_global_id(0);
output[i] = inputA[i] * inputB[i];

}

• This is NOT C, it’s just designed to look like C.

• The OpenCL compiler can take this program and generate machine code
to run on a particular device (in this case a GPU) in a massively parallel
fashion

18

© Kenneth M. Anderson, 2015

Our First Kernel: Multiply Arrays (II)

__kernel void multiply_arrays(
__global const float* inputA,
__global const float* inputB,
__global float* output) {
int i = get_global_id(0);
output[i] = inputA[i] * inputB[i];

}

• We see that this kernel expects three inputs: each an array of floats

• Our call to clSetKernelArg() on slide 16 assigns our buffers to these args

• All three of these arrays are stored in the GPU’s global memory

• To perform work, we find out what work item we are (get_global_id())

• We use that id to index into the arrays

• OpenCL will try to complete as many work items in parallel as it can

19

© Kenneth M. Anderson, 2015

The single threaded version?

• How do we decide if all this work is worth it

• Let’s compare the GPU version of the program with the single-threaded
version that runs on the CPU. Here it is

• for (int i = 0; i < NUM_ELEMENTS; ++i) {
• results[i] = a[i] * b[i];

• }

• (This code reuses the definitions of a, b, and results seen previously)

• The book shows how to profile OpenCL code (see Chapter 7 for details)

20

© Kenneth M. Anderson, 2015

The results?

• Multiply two arrays of 200,000 random float values

• Total (GPU): 1717845 ns

• Elapsed (GPU): 86000 ns <= how long did the multiplications take?

• Elapsed (CPU): 886752 ns <= single-threaded version

• The GPU version is ten times faster

• Finishing in .08 milliseconds

• The CPU finished in 0.8 milliseconds

• Worth it? Not for this simple program. But, in general, YES!

21

© Kenneth M. Anderson, 2015

Working in Multiple Dimensions

• Our first example showed how to operate on buffers that were the same
length and that had a single index to organize the work

• We can work with multiple dimensions (such as multiplying matrices) by
employing a common trick

• We store a multidimensional matrix into a linear array

• If we have a 2x2 matrix, we can store its values in a 4-element array

• We then use a “width” parameter and x,y coordinates to calculate where in
the linear array a particular value is stored. Rather than

• a[x][y] = 10

• We write

• a[x*width+y] = 10

22

© Kenneth M. Anderson, 2015

Our Second Kernel: Matrix Multiplication

23

Here’s code that implements this sequentially:

#define WIDTH_OUTPUT WIDTH_B
#define HEIGHT_OUTPUT HEIGHT_A

float a[HEIGHT_A][WIDTH_A] = «initialize a»;
float b[HEIGHT_B][WIDTH_B] = «initialize b»;
float r[HEIGHT_OUTPUT][WIDTH_OUTPUT];

for (int j = 0; j < HEIGHT_OUTPUT; ++j) {
for (int i = 0; i < WIDTH_OUTPUT; ++i) {

float sum = 0.0;
for (int k = 0; k < WIDTH_A; ++k) {

sum += a[j][k] * b[k][i];
}
r[j][i] = sum;

}
}

As you can see, as the number of elements in our array increases, the work
required to multiply them increases dramatically, making large-matrix multi-
plication a very CPU-intensive task indeed.

Parallel Matrix Multiplication

Here’s a kernel that can be used to multiply two-dimensional matrices:

DataParallelism/MatrixMultiplication/matrix_multiplication.cl
__kernel void matrix_multiplication(uint widthA,Line 1

__global const float* inputA,-

__global const float* inputB,-

__global float* output) {-
5

int i = get_global_id(0);-

int j = get_global_id(1);-
-

int outputWidth = get_global_size(0);-

int outputHeight = get_global_size(1);10

int widthB = outputWidth;-
-

float total = 0.0;-

for (int k = 0; k < widthA; ++k) {-

total += inputA[j * widthA + k] * inputB[k * widthB + i];15

}-

output[j * outputWidth + i] = total;-

}-

This kernel executes within a two-dimensional index space, each point of
which identifies a location in the output array. It retrieves this point by calling
get_global_id() twice (lines 6 and 7).

Chapter 7. Data Parallelism • 202

report erratum • discussPrepared exclusively for Ken Anderson

Our work items have been
configured to have two dimensions

The size of the output
matrix was set as a global
variable.

© Kenneth M. Anderson, 2015

Configuring OpenCL to Work with this Kernel

24

It can find out the range of the index space by calling get_global_size(), which
this kernel uses to find the dimensions of the output matrix (lines 9 and 10).
This also gives us widthB, which is equal to outputWidth, but we have to pass
widthA as a parameter.

The loop on line 14 is just the inner loop from the sequential version we saw
earlier—the only difference being that because OpenCL buffers are unidimen-
sional, we can’t write the following:

output[j][i] = total;

Instead, we have to use a little arithmetic to determine the correct offset:

output[j * outputWidth + i] = total;

The host program required to execute this kernel is very similar to the one
we saw yesterday, the only significant difference being the arguments passed
to clEnqueueNDRangeKernel():

DataParallelism/MatrixMultiplication/matrix_multiplication.c
size_t work_units[] = {WIDTH_OUTPUT, HEIGHT_OUTPUT};
CHECK_STATUS(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, work_units,

NULL, 0, NULL, NULL));

This creates a two-dimensional index space by setting work_dim to 2 (the third
argument) and specifies the extent of each dimension by setting global_work_size
to a two-element array (the fifth argument).

This kernel shows an even more dramatic performance benefit than the one
we saw yesterday. On my MacBook Pro, multiplying a 200×400 matrix by a
300×200 matrix takes approximately 3 ms, compared to 66 ms on the CPU,
a speedup of more than 20x.

Because this kernel is performing much more work per data element, we
continue to see a significant speedup even if we take the overhead of copying
data between the CPU and GPU into account. On my MacBook Pro, those
copies take around 2 ms, for a total time of 5 ms, which still gives us a 13x
speedup.

All the code we’ve run so far simply assumes that there’s an OpenCL-compat-
ible GPU available. Clearly this may not always be true, so next let’s see how
we can find out which OpenCL platforms and devices are available to a par-
ticular host.

report erratum • discuss

Day 2: Multiple Dimensions and Work-Groups • 203

Prepared exclusively for Ken Anderson

To ensure our kernel has the information it needs, we have to
change how we add work items to the queue

The “2” tells OpenCL that the work items have two dimensions

The work_units array tells OpenCL the range of the two dimensions

© Kenneth M. Anderson, 2015

The results?

• The book multiplies a 200x400 matrix (of random floating point values) by a
300x200 matrix producing a 300x400 matrix as a result

• Total (GPU): 4899413 ns

• Elapsed (GPU): 3840000 ns <= 78% of the time spent multiplying

• Elapsed (CPU): 65459804 ns <= single-threaded version

• The GPU version is 17 times faster!

• Finishing in 3.84 milliseconds

• The CPU finished in 65.5 milliseconds

• Worth it? For a program that has to do a lot of these multiplications?

• YOU BET!

25

© Kenneth M. Anderson, 2015

OpenCL and OpenGL: Match Made in Heaven?

• One use of OpenCL code is to work with OpenGL to perform graphics-related
calculations on the GPU, freeing up the CPU to perform other operations

• OpenGL is a standard for creating 3D programs/animations

• Our book presents two OpenGL applications that make use of OpenCL to
perform operations on triangles

• In the first example, we create a “mesh” of triangles and use OpenGL to
display them

• we then send the vertices of the mesh to an OpenCL program that
multiplies there values by 1.01 increasing the spacing of the vertices by
1% on each iteration

• This has the visual effect of zooming in on the mesh

26

© Kenneth M. Anderson, 2015

Background (I)

• The mesh of triangles can be conceptualized like this

27

So in the preceding example, vertex 0 is at (0, 0, 0), vertex 1 is at (1, 0, 0),
vertex 2 is at (2, 0, 0), and so on. The vertex buffer will therefore contain [0,
0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, …].

As for the index buffer, the first triangle will use vertices 0, 1, and 3; the
second 1, 3, and 4; the third 1, 2, and 4; and so on. The index buffer we create
defines a triangle strip in which, after specifying the first triangle with three
vertices, we only need a single additional vertex to define the next triangle:

0 1 2

3 4 5

So our index buffer will contain [0, 3, 1, 4, 2, 5, …].

The code that accompanies this book includes a Mesh class that generates
initial values for the vertex and index buffers. Our sample uses this to create
a 64×64 mesh with x- and y-coordinates ranging from -1.0 to 1.0:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
Mesh mesh = new Mesh(2.0f, 2.0f, 64, 64);

The z-coordinates are all initialized to zero—we’ll modify them during anima-
tion to simulate ripples.

This data is then copied to OpenGL buffers as follows:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
int vertexBuffer = glGenBuffers();
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glBufferData(GL_ARRAY_BUFFER, mesh.vertices, GL_DYNAMIC_DRAW);

int indexBuffer = glGenBuffers();
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, mesh.indices, GL_STATIC_DRAW);

Each buffer has an ID allocated by glGenBuffers(), is bound to a target with
glBindBuffer(), and has its initial values set with glBufferData(). The index buffer
has the GL_STATIC_DRAW usage hint, indicating that it won’t change (is static).
The vertex buffer, by contrast, has the GL_DYNAMIC_DRAW hint because it will
change between animation frames.

Before we implement the ripple code, we’ll start with something easier—a
simple kernel that increases the size of the mesh over time.

Chapter 7. Data Parallelism • 214

report erratum • discussPrepared exclusively for Ken Anderson

There’s an index buffer that captures
the existence of each index: 0, 1, 2
There’s also a vertex buffer that
captures the position of each index:

Index 1 => {0, 0, 0} i.e. x, y, z

So in the preceding example, vertex 0 is at (0, 0, 0), vertex 1 is at (1, 0, 0),
vertex 2 is at (2, 0, 0), and so on. The vertex buffer will therefore contain [0,
0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, …].

As for the index buffer, the first triangle will use vertices 0, 1, and 3; the
second 1, 3, and 4; the third 1, 2, and 4; and so on. The index buffer we create
defines a triangle strip in which, after specifying the first triangle with three
vertices, we only need a single additional vertex to define the next triangle:

0 1 2

3 4 5

So our index buffer will contain [0, 3, 1, 4, 2, 5, …].

The code that accompanies this book includes a Mesh class that generates
initial values for the vertex and index buffers. Our sample uses this to create
a 64×64 mesh with x- and y-coordinates ranging from -1.0 to 1.0:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
Mesh mesh = new Mesh(2.0f, 2.0f, 64, 64);

The z-coordinates are all initialized to zero—we’ll modify them during anima-
tion to simulate ripples.

This data is then copied to OpenGL buffers as follows:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
int vertexBuffer = glGenBuffers();
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glBufferData(GL_ARRAY_BUFFER, mesh.vertices, GL_DYNAMIC_DRAW);

int indexBuffer = glGenBuffers();
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, mesh.indices, GL_STATIC_DRAW);

Each buffer has an ID allocated by glGenBuffers(), is bound to a target with
glBindBuffer(), and has its initial values set with glBufferData(). The index buffer
has the GL_STATIC_DRAW usage hint, indicating that it won’t change (is static).
The vertex buffer, by contrast, has the GL_DYNAMIC_DRAW hint because it will
change between animation frames.

Before we implement the ripple code, we’ll start with something easier—a
simple kernel that increases the size of the mesh over time.

Chapter 7. Data Parallelism • 214

report erratum • discussPrepared exclusively for Ken Anderson

When we create the vertex buffer, we tell OpenGL that it will change

© Kenneth M. Anderson, 2015

Background (II)

• Our kernel for zooming is simple

• get each value, (x, y, z), and increase its size by 1%

28

Accessing an OpenGL Buffer from an OpenCL Kernel
Here’s the kernel that implements our zoom animation:

DataParallelism/Zoom/src/main/resources/zoom.cl
__kernel void zoom(__global float* vertices) {

unsigned int id = get_global_id(0);
vertices[id] *= 1.01;

}

It takes the vertex buffer as an argument and multiplies every entry in that
buffer by 1.01, increasing the size of the mesh by 1% every time it’s called.

Before we can pass the vertex buffer to our kernel, we first need to create an
OpenCL buffer that references it:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
CLMem vertexBufferCL =

clCreateFromGLBuffer(context, CL_MEM_READ_WRITE, vertexBuffer, null);

This buffer object can then be used in our main rendering loop as follows:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
while (!Display.isCloseRequested()) {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, planeDistance);
glDrawElements(GL_TRIANGLE_STRIP, mesh.indexCount, GL_UNSIGNED_SHORT, 0);

Display.update();

Util.checkCLError(clEnqueueAcquireGLObjects(queue, vertexBufferCL, null, null));➤
kernel.setArg(0, vertexBufferCL);➤
clEnqueueNDRangeKernel(queue, kernel, 1, null, workSize, null, null, null);➤
Util.checkCLError(clEnqueueReleaseGLObjects(queue, vertexBufferCL, null, null));➤
clFinish(queue);➤

}

Before an OpenCL kernel can use an OpenGL buffer, we need to acquire it
with clEnqueueAcquireGLObjects(). We can then set it as an argument to our kernel
and call clEnqueueNDRangeKernel() as normal. Finally, we release the buffer with
clEnqueueReleaseGLObjects() and wait for the commands we’ve dispatched to finish
with clFinish().

Run this code, and you should see the mesh start out small and quickly grow
to the point that a single triangle fills the screen.

Now that we’ve got a simple animation working that integrates OpenGL with
OpenCL, we’ll look at the more sophisticated kernel that implements our
water ripples.

report erratum • discuss

Day 3: OpenCL and OpenGL—Keeping It on the GPU • 215

Prepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2015

Background (III)

• The key to making this work is to then associate an OpenGL buffer with an
OpenCL buffer

• In a loop do the following

• draw the OpenGL buffer

• associate the OpenGL buffer with an OpenCL buffer

• allow OpenCL to apply the kernel to the OpenCL buffer (which changes
the OpenGL buffer automatically)

• call “finish” to ensure that all OpenCL operations have completed

• OpenGL will then draw the new mesh, the next time through the loop

29

© Kenneth M. Anderson, 2015

Background (IV): In Code

30

Accessing an OpenGL Buffer from an OpenCL Kernel
Here’s the kernel that implements our zoom animation:

DataParallelism/Zoom/src/main/resources/zoom.cl
__kernel void zoom(__global float* vertices) {

unsigned int id = get_global_id(0);
vertices[id] *= 1.01;

}

It takes the vertex buffer as an argument and multiplies every entry in that
buffer by 1.01, increasing the size of the mesh by 1% every time it’s called.

Before we can pass the vertex buffer to our kernel, we first need to create an
OpenCL buffer that references it:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
CLMem vertexBufferCL =
clCreateFromGLBuffer(context, CL_MEM_READ_WRITE, vertexBuffer, null);

This buffer object can then be used in our main rendering loop as follows:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
while (!Display.isCloseRequested()) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, planeDistance);
glDrawElements(GL_TRIANGLE_STRIP, mesh.indexCount, GL_UNSIGNED_SHORT, 0);

Display.update();

Util.checkCLError(clEnqueueAcquireGLObjects(queue, vertexBufferCL, null, null));➤
kernel.setArg(0, vertexBufferCL);➤
clEnqueueNDRangeKernel(queue, kernel, 1, null, workSize, null, null, null);➤
Util.checkCLError(clEnqueueReleaseGLObjects(queue, vertexBufferCL, null, null));➤
clFinish(queue);➤

}

Before an OpenCL kernel can use an OpenGL buffer, we need to acquire it
with clEnqueueAcquireGLObjects(). We can then set it as an argument to our kernel
and call clEnqueueNDRangeKernel() as normal. Finally, we release the buffer with
clEnqueueReleaseGLObjects() and wait for the commands we’ve dispatched to finish
with clFinish().

Run this code, and you should see the mesh start out small and quickly grow
to the point that a single triangle fills the screen.

Now that we’ve got a simple animation working that integrates OpenGL with
OpenCL, we’ll look at the more sophisticated kernel that implements our
water ripples.

report erratum • discuss

Day 3: OpenCL and OpenGL—Keeping It on the GPU • 215

Prepared exclusively for Ken Anderson

DEMO

© Kenneth M. Anderson, 2015

Ripple (I)

• In the previous example, the z values were initialized to zero

• And, 0 * 1.01 == 0

• As a result, the “zoom” of the previous example was achieved by just spacing
out the triangles' x and y values until they were offscreen

• The second example is more interesting, the kernel targets the z value of a
triangle’s vertices

• As a result, it will morph the mesh into “3D shapes”

• And, just to be fancy, the program supports up to 16 ripples at a time!

31

© Kenneth M. Anderson, 2015

Ripple (II)

• Each click on the mesh (up to 16), creates a “center point” for a wave that
ripples out over the mesh

• Our kernel looks at each vertex and calculates the impact of each ripple
on the z coordinate of that vertex, using the following equation and
conceptual model

32

Within the loop, we examine each ripple center with a nonzero start time in
turn. For each, we start by determining the distance d between the point
we’re calculating and the ripple center (line 21). Next, we calculate the radius
r of the expanding ripple ring (line 23) and δ , the distance between our point
and this ripple ring (line 24):

r

d
ripple center

vertex

Finally, we can combine δ and r to get z :

Here, A , D , W , and F are constants representing the amplitude of the wave
packet, the rate at which it decays as it expands, the width of the wave
packet, and the frequency, respectively.

The final piece of the puzzle is to extend our host application to create our
ripple centers:

DataParallelism/Ripple/src/main/java/com/paulbutcher/Ripple.java
int numCenters = 16;
int currentCenter = 0;
FloatBuffer centers = BufferUtils.createFloatBuffer(numCenters * 2);
centers.put(new float[numCenters * 2]);
centers.flip();
LongBuffer times = BufferUtils.createLongBuffer(numCenters);
times.put(new long[numCenters]);
times.flip();

CLMem centersBuffer =
clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,centers, null);

CLMem timesBuffer =
clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, times, null);

And start a new ripple whenever the mouse is clicked:

report erratum • discuss

Day 3: OpenCL and OpenGL—Keeping It on the GPU • 217

Prepared exclusively for Ken Anderson

Within the loop, we examine each ripple center with a nonzero start time in
turn. For each, we start by determining the distance d between the point
we’re calculating and the ripple center (line 21). Next, we calculate the radius
r of the expanding ripple ring (line 23) and δ , the distance between our point
and this ripple ring (line 24):

r

d
ripple center

vertex

Finally, we can combine δ and r to get z :

z = Ae−Dr
2
e−Wδ

2
cos(Fπδ)

Here, A , D , W , and F are constants representing the amplitude of the wave
packet, the rate at which it decays as it expands, the width of the wave
packet, and the frequency, respectively.

The final piece of the puzzle is to extend our host application to create our
ripple centers:

DataParallelism/Ripple/src/main/java/com/paulbutcher/Ripple.java
int numCenters = 16;
int currentCenter = 0;
FloatBuffer centers = BufferUtils.createFloatBuffer(numCenters * 2);
centers.put(new float[numCenters * 2]);
centers.flip();
LongBuffer times = BufferUtils.createLongBuffer(numCenters);
times.put(new long[numCenters]);
times.flip();

CLMem centersBuffer =
clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,centers, null);

CLMem timesBuffer =
clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, times, null);

And start a new ripple whenever the mouse is clicked:

report erratum • discuss

Day 3: OpenCL and OpenGL—Keeping It on the GPU • 217

Prepared exclusively for Ken Anderson

A is the amplitude of the wave; D
is the decay of the wave; W is the
width of the wave; F is the
frequency of the wave

© Kenneth M. Anderson, 2015

Ripple (III): The Kernel

33

Simulating Ripples
We’re going to simulate expanding rings of ripples. Each expanding ring is
defined by a 2D point on the mesh (the center of the expanding ring) together
with a time (the time at which the ring started expanding). As well as taking
a pointer to the OpenGL vertex buffer, our kernel takes an array of ripple
centers together with a corresponding array of times (where time is measured
in milliseconds):

DataParallelism/Ripple/src/main/resources/ripple.cl
#define AMPLITUDE 0.1Line 1

#define FREQUENCY 10.0-

#define SPEED 0.5-

#define WAVE_PACKET 50.0-

#define DECAY_RATE 2.05

__kernel void ripple(__global float* vertices,-

__global float* centers,-

__global long* times,-

int num_centers,-

long now) {10

unsigned int id = get_global_id(0);-

unsigned int offset = id * 3;-

float x = vertices[offset];-

float y = vertices[offset + 1];-

float z = 0.0;15
-

for (int i = 0; i < num_centers; ++i) {-

if (times[i] != 0) {-

float dx = x - centers[i * 2];-

float dy = y - centers[i * 2 + 1];20

float d = sqrt(dx * dx + dy * dy);-

float elapsed = (now - times[i]) / 1000.0;-

float r = elapsed * SPEED;-

float delta = r - d;-

z += AMPLITUDE *25

exp(-DECAY_RATE * r * r) *-

exp(-WAVE_PACKET * delta * delta) *-

cos(FREQUENCY * M_PI_F * delta);-

}-

}30

vertices[offset + 2] = z;-

}-

We start by determining the x- and y-coordinates of the vertex that’s being
processed by the current work-item (lines 13 and 14). In the loop (lines 17–30)
we calculate a new z-coordinate that we write back to the vertex buffer on
line 31.

Chapter 7. Data Parallelism • 216

report erratum • discussPrepared exclusively for Ken Anderson

Three arrays are passed along with two
parameters to each one-dimensional work item

Our id retrieves the vertex that we’re working
on. The centers array contains the center point
of each ripple. The times array contains the time
each ripple was created. The now variable
contains the current time.

With that information, we can use the equation
on the previous slide, to update the z value for
each ripple

OpenCL ensures that ALL vertices are updated
IN PARALLEL. That’s the true power of this
approach. DEMO

© Kenneth M. Anderson, 2015

Summary

• We scratched the service of data parallelism and GPU programming with
OpenCL

• We looked at a range of examples of OpenCL kernels

• an abstract way of defining a “work item”

• This specification is compiled into code that performs the specified
operations on as many data points as possible in parallel

• We saw the power of this technique by showing how OpenCL can support
the transformation of OpenGL objects, the GPU performs most of the
calculations, freeing up the CPU to handle other tasks

• This approach stands in contrast to the other concurrency alternatives

• our programs were all single threaded; instead we used the GPU to
perform calculations in parallel when it was needed

34

© Kenneth M. Anderson, 2015

Coming Up Next

• Lecture 28: Grand Central Dispatch

35

