
© Kenneth M. Anderson, 2015

The Nature of Software Development, Part One

CSCI 5828: Foundations of Software Engineering

Lecture 23 — 11/10/2015

1

© Kenneth M. Anderson, 2015

Goals

• Cover the material presented in Part One of our Agile textbook

• Chapters 1 to 5

• (Seems like a lot, but this book is a quick read)

• General comments on the book

• This isn’t your traditional textbook!

• It is a series of informal essays from a master of software development

• The goal: Understand the simplest expression of what software
development is all about

• When faced with complexity, simplicity in our own work is key

• it helps us reduce the number of accidental difficulties we inject
into our own work!

2

© Kenneth M. Anderson, 2015

The Natural Way (I)

• Ron Jeffries acknowledges that software development is hard

• Who is Ron Jeffries? See here for more info.

• He’s been a software developer since the early 60’s and written a lot of
software

• He helped to invent Extreme Programming

• He has written extensively on-line about Agile and XP

• But, he asserts in the introduction that if you are careful, there is a “natural
path” for software development that can be stated simply

• In software development, focus on delivering value early and often

• The rest of the book is an attempt to explain this statement!

3

http://ronjeffries.com/xprog/articles/bio/

© Kenneth M. Anderson, 2015

The Natural Way (II)

• Life (and complexity) will intervene and knock us off the Natural Way

• We won’t always be on the path due to the accidental and essential
difficulties of software engineering

• However, the Natural Way serves as a guide, reminding us that we can get
things back on track and providing steps to get there

• In particular

• by reminding us to focus on value and

• by reminding us to identify the easiest way to start delivering that value
to ourselves and to our customer

4

© Kenneth M. Anderson, 2015

Characteristics of the Natural Way

• So, Jeffries asserts that there is a natural way to develop software and it
serves everyone well

• It serves ends users well by delivering value to them quickly

• It serves our company well since

• it provides ROI sooner

• it provides important information quickly

• it provides the ability to course correct as needed

• It serves management well since it lets them

• see what is really going on in a project (allowing them to act if needed)

• it makes information visible so they do not have to dig for it

• It serves developers well since it provides them with clear direction and
gives them the freedom to use their skills to build what’s needed

5

© Kenneth M. Anderson, 2015

Warning

• Jeffries warns us:

• The Natural Way is simple but it is not easy

• The ideas in this book are guidelines

• you will need to think about the ideas and how they might apply to
you and your situation

• you will (perhaps) need to change your behavior and identify ways to
make your approach (or your company’s approach) to developing
software simpler

• the “frequent delivery of visible value” is easy to understand but
difficult to implement

• His book does not tell you HOW to implement these ideas

• it instead offers ideas about WHY software should be delivered this way

6

© Kenneth M. Anderson, 2015

The Natural Way in a Nutshell

7

Value

Quality

Slicing

Building

Planning

Organizing

Guiding

© Kenneth M. Anderson, 2015

Layers At A Glance: Getting to Value

• We start by creating a team responsible for creating value for a customer; We
guide them by watching what they produce and providing feedback

• We organize teams to get work done. We organize our project around
features since users find value in features; they are easy to organize around

• We plan our projects by working on features our client needs

• We build our product by implementing features, providing them with frequent

delivery of value

• We slice our features down to the minimum needed to provide value; we

build on these features over time to provide more value; our system is already
ready for deployment

• We build our system using techniques and tools that lead to high quality; we
work in a way that is sustainable

• In this way, we deliver value to our customer; value is “what you want”

8

© Kenneth M. Anderson, 2015

What is Value?

• Jefferies asserts that there is no mystery with respect to what “value” is

• Value is what we want; in software, we typically want features

• features in a system provide value to its customers

• each time we finish a feature, we show it to the customer

• they see value quickly; we get feedback and information about
what to build or work on next

• A key theme is that value starts when the system is deployed

• If you wait too long to give the user something, they don’t see value
in what you’re building

• this theme then leads us to focusing on small valuable features since
it is easier to create/complete small features

9

© Kenneth M. Anderson, 2015

The Argument Made Graphically (I)

10

Imagine each feature is a rectangle; width is cost/time; height is value

Lots of value, low cost

Low value, high cost

© Kenneth M. Anderson, 2015

The Argument Made Graphically (II)

11

As a team, you’re presented with a bunch of features

which ones should we build first?

© Kenneth M. Anderson, 2015

The Argument Made Graphically (III)

12

Should we do this?

© Kenneth M. Anderson, 2015

The Argument Made Graphically (IV)

13

Or this?

© Kenneth M. Anderson, 2015

The Argument Made Graphically (V)

14

The book even makes the point that if you’re
used to working on short, high value features
that you may decide that long, low value
features are just not worth the effort!

© Kenneth M. Anderson, 2015

Discussion

• Jeffries point is that the best value for a software development project comes
from small, value-focused features that are delivered frequently

• Now, your development situation will never be as clear cut as the
preceding slides

• but remember this book is not about “how”, it’s about “why”

• In this case, why it is important to really understand what your customer
(or user) wants

• how can we deliver value to them

• as fast as we can

15

© Kenneth M. Anderson, 2015

Guiding

• To create value for our customer/user

• we need to guide our team

• and, Jeffries asserts, guiding goes better feature by feature

• To see why, he makes the following argument

16

© Kenneth M. Anderson, 2015

Every Project Ever

17

Features

Time Deadline

Plan All the features!

© Kenneth M. Anderson, 2015

Every Project Ever

17

Features

Time Deadline

Plan

We have a plan to
implement ALL the
features by the
deadline

All the features!

© Kenneth M. Anderson, 2015

The Problem? Nothing ever goes to plan

18

Features

Time Deadline

Plan All the features!

Late!

What We
Deliver

© Kenneth M. Anderson, 2015

The problem with waterfall

19

Features

Time Deadline

Plan All the features!

Analysis Design

Implement

With the
traditional model,
you find out too
late that you
won’t make the
deadline

Test

© Kenneth M. Anderson, 2015

Analysis Design

Implement Test

The Natural Way (Features) Provides More
Information Faster than Waterfall

20

Features

Time Deadline

Plan All the features!

Late!

What We
Deliver

F
F

F
F

F
F

F
F

© Kenneth M. Anderson, 2015

Analysis Design

Implement Test

The Natural Way (Features) Provides More
Information Faster than Waterfall

20

Features

Time Deadline

Plan All the features!

Late!

What We
Deliver

F
F

F
F

F
F

F
F

Features provide better guidance

© Kenneth M. Anderson, 2015

Organizing by Feature

• We want to develop software by creating small, high-value features

• We have seen that we get better guidance about our progress if we do

• How do we organize around features?

• Here Jeffries is talking about how do you organize your software teams?

• The issue of team organization keeps appearing in our discussions

• It really is an important decision that influences everything that a software
development organization can accomplish

• Who does what?

• Who talks to whom?

• Who is in charge?

21

© Kenneth M. Anderson, 2015

Organizing by Skill

• Many organizations group teams by skill

• This team does analysis

• This team does design

• This team does coding

• This team does testing

• The problem?

• You have multiple teams that have to be coordinated

• Delays are built into your process since one team may not be ready to
take work from the previous team; if the analysis team gets behind,
EVERYONE is behind even before they do one thing for a project!

22

© Kenneth M. Anderson, 2015

Organizing by Feature

• It should come as no surprise that Jeffries recommends that teams should be
organized by feature

• Each team should be small and should be assigned a feature

• Consequence: the team needs all the people and all the skills it needs
to create the feature

• UX, analysis, design, QA, persistence, middleware, etc.

• Advantages

• Multiple features can be built in parallel

• Management knows how work is distributed

• Each feature gets dedicated attention

• responsibility for a feature and authority to implement it are aligned

23

© Kenneth M. Anderson, 2015

Arguments Against (I)

• “Our company is not organized that way…”

• Jeffries is arguing that your company needs to change

• Using Brooks’s terminology, we can see that Jeffries is asserting that

• teams organized by skill

• or for reasons other than feature

• are introducing accidental difficulties into your development process

• Why? You have built in delays into your process with team coordination
that wouldn’t be there if you switched your technique

• If a team is completely responsible for a feature, there’s no hand offs
that need to be coordinated; the need for coordination goes down

24

© Kenneth M. Anderson, 2015

Arguments Against (II)

• “We don’t have enough specialists…”

• Jeffries is arguing to not become too fixated on the term “expert”

• Sure, you won’t have enough UX or database experts to have one/team

• But you probably have people who are “very good” at UX or “good” at
databases and interested in learning more

• Let them take on those roles

• in addition, people are spectrums not points

• “I’m good at programming; I know how to configure and use
several databases; I know some front-end technologies”

• Now, let your team members self identify as being really interested in
one role over another; let them talk to other people interested in that
same role => form a community around it and let them teach each other

25

© Kenneth M. Anderson, 2015

Planning

• When we start a project, we have a “product vision”

• Visions are grandiose; they are not explained in terms of features

• So, how do we transform a vision into the features we need to

• create software by the frequent delivery of high-value features

• guiding our projects via our progress on completing those features

• and organizing our teams to build those features?

• Planning!

• As Jeffries says, planning is indispensable

• He quotes a WW II, US military general: “Plans are useless but planning
is indispensable”

• What does this mean?
26

© Kenneth M. Anderson, 2015

The utility of planning

• Planning as an activity keeps us oriented on our goals

• What are we trying to accomplish? By when? For how much money?

• This is something we ALWAYS need to be aware of

• BUT

• making detailed plans upfront can get us into trouble

• “Plans are useless…”

• BUT the act of planning is always useful… we need to consider lots of ideas
to find the good ones, we need to have discussions to identify our high value
features, but we have to do so knowing things will change and thus we don’t
clean to our old (now useless) plan but instead we create a new plan!

27

© Kenneth M. Anderson, 2015

Planning by Jeffries

• “Here’s a better way: set a time and money budget; produce the most
valuable features first; keep the product ready to ship at any time—and stop
when the clock runs out. Quite likely we’ll even stop before the deadline,
because we’ve already got the important stuff done. We deliver the bulk of
the value in far less time, for far less money.”

• To get started, Jeffries now starts to lay out the a fairly typical approach to
Agile software development

• Hmm, I wonder why it would come off as fairly typical?

• Oh right, he helped to invent it in the first place! 😃

28

© Kenneth M. Anderson, 2015

Agile (as presented by Jeffries)

• Agile development is the act of continuous planning by feature splitting

• We will always be planning because we’re always acting on implementing
the highest value feature that can be implemented in a short amount of
time

• These features will be tracked via user stories; each story should
describe a feature that would take two to three days to implement

• Jeffries recommends AGAINST converting stories to tasks

• because tasks will take the customer OUT of the process

• Instead, convert big stories into smaller stories until each one takes
only 2 to 3 points to implement

• These features are then implemented in the context of iterations of a few
weeks in length

29

© Kenneth M. Anderson, 2015

Estimates (Jeffries doesn’t like them!)

• “We plan each iteration right before it begins. To decide how much work to
take on, we need to understand the work. As a team, we discuss the work.
The team’s Product Champion presents one feature at a time, followed by a
brief team dis- cussion about what it’ll take to accomplish the feature.
Everyone stays engaged, and the team understands the feature before
committing to do it. I don’t recommend estimating the individual work pieces
at all. Instead, understand them, and then look at the aggregate and decide
how much of it the team can do. If estimates really help the team, go for it.
But be careful! The point isn’t to make good estimates—the point is to do
good work at a consistent pace.”

• He further describes generating estimates as pernicious since it is an activity
that takes you away from the work and they are almost always wrong

• it’s more important, he asserts, to get work done at a consistent pace

• just always be making progress towards your goal

30

© Kenneth M. Anderson, 2015

Stretch Goals

• During short-term planning (i.e. planning an iteration), it’s tempting to add
“stretch goals” or to try for “just one more feature”

• Jeffries says “Please do not do this. It’s devastatingly destructive.”

• Why?

• Because as soon as you put this in front of a team, they will want to do it

• They will push themselves to achieve that extra goal; they will hurry and
inject defects they wouldn’t have otherwise;

• once you have those defects, you have to fix them and that puts you
behind; your “hurrying” ends up slowing you down

• The overall goal is SUSTAINABLE, CONSISTENT delivery of features

31

© Kenneth M. Anderson, 2015

Wrapping Up

• We’ve now reviewed the first three layers of the “natural way” for developing
software

• guiding, organizing, and planning

• These our the foundational practices that lead to achieving our goal

• producing value for our customer/user via the consistent delivery of high-
value features

• We will discuss the next three layers next time!

32

