Concurrency and Functional Programming

CSCI 5828: Foundations of Software Engineering
Lecture 11 & 12 — 09/29/2015 & 10/01/2015

© Kenneth M. Anderson, 2015



(Goals

- Cover the material presented in Chapter 3 of our concurrency textbook
* Introduction to Clojure

» Books examples from Day 1 and the start of Day 2

© Kenneth M. Anderson, 2015



@ Clojure



http://clojure.org

Installation (I)

- To work with this material, you need to install Clojure
* The best way to do that is with Leiningen
- On Mac OS X with HomeBrew installed, this is easy
* brew install leiningen
- Otherwise, follow the simple instructions on the Leiningen home page

- http://leiningen.org

 The first time you invoke the “lein” script, it will auto-install everything it needs

« System of Systems: It makes use of Maven in the background to
download the packages that it needs!

© Kenneth M. Anderson, 2015


http://leiningen.org

Installation (l1)

- A great way to learn Clojure is to have a good environment to work in
- One of the best text editors to offer Clojure support is

- Light Table <http://lighttable.com>

- Head to that web page and download it
- Then follow any instructions it may have to install it
- To try out Clojure, you can then open a Light Table “Instarepl”
- REPL stands for Read-Evaluate-Print Loop
- Type “Control-Space” and then type “instarepl”
+ You will see a command that says “Open a clojure instarepl”

* You can then start typing clojure forms and see the result

© Kenneth M. Anderson, 2015


http://lighttable.com

Clojure Reference Materials

- O’Reilly has a great “Introduction to Clojure” book

» Living Clojure: <http://shop.oreilly.com/product/0636920034292.do>

- The Pragmatic Programmers offer a range of books on Clojure

- Free Download: Clojure Distilled: <http://media.pragprog.com/titles/dswdcloj/

ClojureDistilled.pdf>
- Programming Clojure: <https://pragprog.com/book/shcloj2/programming-clojure>

« Applied Clojure: <https://pragprog.com/book/vmclojeco/clojure-applied>
- In addition, you can check out the official Clojure website

- <http://clojure.org>

« This website also features a Clojure “cheat sheet”:

 <http://clojure.org/cheatsheet>

© Kenneth M. Anderson, 2015


http://shop.oreilly.com/product/0636920034292.do
http://media.pragprog.com/titles/dswdcloj/ClojureDistilled.pdf
https://pragprog.com/book/shcloj2/programming-clojure
https://pragprog.com/book/vmclojeco/clojure-applied
http://clojure.org
http://clojure.org/cheatsheet

REPLs and Projects (l)

- If you don’t want to use Light Table, you can just type at the command line:
* lein repl
 This loads up a Clojure session and sets the default name space to “user”

- To write a Clojure application or library, you work with lein to create a project
skeleton

 For instance, create a directory on your computer for Clojure projects
- Go to that directory and type: 1ein new examples

- That creates a new folder called “examples” with a particular structure
(next slide)

- Typing “lein repl” in the root folder of that project gives you a repl that is
preloaded with the Clojure functions defined in that project

© Kenneth M. Anderson, 2015



Project Structure

e examples
e CHANGELOG.md, LICENSE, README.md
e doc/
e intro.md
e project.clj
e resources/
e src/
e examples/
e core.clj
e Test
e examples/
e core_test.clj

« Once you have this created, you can put functions in core.clj and test cases
In core_test.clj. In the root folder: “lein test” will run the test cases

© Kenneth M. Anderson, 2015



—Xample project.cl|

 This project.clj file provides information about the project and also serves as
iInput to lein’s dependency management and build system
« Here’s an example project.clj file from a different project | made

(defproject test-prime "1.0"
:dependencies [[org.clojure/clojure "1.6.0"]]
:Jvm—-opts ["-Xmx4096m" ]
:maln test-prime.prime)

 This particular project.clj file declares
 our project is called “test-prime”
* it has the version number of “1.0” and depends on Clojure 1.6
- it wants the Java virtual machine to have up to 4GB of memory and
- a main routine is defined in “prime.clj” located in src/test_prime/

 Defining the main routine lets you type “lein run” to invoke it from the
command line; we’ll see that in action later this semester

© Kenneth M. Anderson, 2014



More Info

* If you are in a REPL session that you launched from within a project
- AND you change the source code of your .clj file

* Then, to see your changes, you need to type:
e (require :reload 'test-prime.prime)
* (require :reload ‘<project-name.project-file>)

« To quit a REPL session, just type: quit

- That’s all we need to understand with respect to setting Clojure up for initial
use; note: there is a LOT more to learn. For instance, if you want to see the
source code of a function, you can ask the REPL with this command

* (source <function name>)

« Example: (source time) Or (source map) OF (source pmap)

© Kenneth M. Anderson, 2015 10



Clojure

 Clojure is a dialect of Lisp created in 2007 by Rich Hickey
- It is built on top of the Java Virtual Machine
« While it is a Lisp, it can make calls into the Java standard libraries

« Sometimes the answer to “how do you do X in Clojure” is answered
with “Jdust call java.util...”,

* |.e., Just use a class provided by Java

- Clojure’s design adopts a focus on programming with immutable values and
the creation of concurrent programs that are straightforward to reason about

* You can easily find videos of Rich Hickey casting aspersions on concurrent
programs with shared mutable state

© Kenneth M. Anderson, 2015 11



Clojure and our Textbook

- In Chapter 3, our textbook focuses more on functional programming style and
the way that concurrency can be incorporated into functional programming

- It also provides a quick introduction to the Clojure language
- It holds off to talk about Clojure’s more explicit concurrency constructs
« atoms
- persistent data structures
 agents
» software transactional memory

- until Chapter 4

© Kenneth M. Anderson, 2015

12



Clojure Basics (l)

- Clojure has a fairly basic set of data « Symbols — x, 1,
types (a.k.a forms) java.lang.String, user/foo
- Booleans — true, false - Lists — (1 2 3 4 5)
- Characters — \a, \A - Vectors — [1 2 3 4 5]
- Strings —“ken anderson” - Sets — #{1 2 3}
« Novalue — nil « Maps — {:first

“Ken” :last “Anderson}

Numbers — 1, 2, 3.14159,
0.000001M, 100000000000ON

Keywords — : first, :last * Note: Commas (,) are
whitespace in Clojure. Use them

if you want, they will be ignored!

© Kenneth M. Anderson, 2015 13



Functions

If the first element of a list is a symbol that references a function, then the list
becomes a function call and will be replaced with its value

e (+ 1 2) => 3
e (sort [9 3 5]) => (3 5 9)
Functions can be defined using another function called defn
* (defn name [args*] forms+)
The value of the last form in forms+ is the return value of the function
Anonymous functions can be created as well either with £n or shorthand syntax
e (fn [x] (+ x 10))
e #(+ 10 %) — multiple args #(+ 10 %0 %1)

© Kenneth M. Anderson, 2015

14



Symbols

« You can create your own symbols with the function def
e (def pi 3.14159)
e (def x 10)

« These statements would add the symbols pi and x to the current namespace

* The values of these symbols are immutable

e (+ x 10) => 20
 This just references the value of x, it doesn’t change x

* You can run the def command again

* (deft x 5)

« x how has the value 5, but all this command did was rebind the symbol

© Kenneth M. Anderson, 2015

15



Control Flow

- Control flow structures are just functions

e (1f (< x 0) "negative" "non-negative")
* (cond

e (< x 10) "small"

e (= x 10) "medium"

e (> x 10) "large"
e :else "uh oh")

* Loops are a special case

« there is an explicit 1oop function, but you’ll typically avoid it and use map
and reduce instead

© Kenneth M. Anderson, 2015 16



Loop (l)

* The generic form of a loop is

e (loop [bindings *] exprs*)

« The call to 1oop creates a “jump point” that allows control to return to the top
of the loop by calling the function recur

* (recur exprs*)

« The expressions associated with recur are allowed to establish new
bindings of the symbols created by loop

« Let’s see an example

© Kenneth M. Anderson, 2015 17



Loop (II)

e (loop [result [] x 5]
e (1f (zero? x)
e result

e (recur (conj result x) (dec x))))
« This expression returns [5, 4, 3, 2, 1]
- The bindings at the top initialize result to an empty vector and x to 5
- The code then checks to see if x is equal to O

« Since it isn’t, recur rebinds result to be a vector that has the value of x
appended to it and rebinds x to 4

- The code then jumps back to 1oop and executes again (the initial bindings
are then ignored)

© Kenneth M. Anderson, 2015

18



Loop ()

* You can also recur to the start of any function and similarly rebind its
parameters

e (defn countdown [result x]
e (1f (zero? x)
e result

e (recur (conj result x) (dec x))))

- This function will take an input vector and a (hopefully positive) number and
appends that number and all of the numbers between it and zero to the
vector

e (countdown [] b)) => [5 4 3 2 1]

« The use of recur also allows Clojure to use tail recursion, allowing this
function to be implemented as a loop and not via recursion

© Kenneth M. Anderson, 2015 19



Loop (IV)

But, this style is rarely needed in functional programming

Instead, you will use more declarative constructs where the iteration is hidden

e (into [] (take 5 (iterate dec 5)))

e (1nto [] (drop-last (reverse (range 0))))
e (vec (reverse (rest (range 6))))

All of these produce the same [5, 4, 3, 2, 1] result

Similarly, you’ll use map to operate on all members of a list and reduce to
use all of the members in a list to calculate some value

e (map inc (range 10)) => (1 2 3 4 5 6 7 8 9 10)
e (reduce + (map 1nc (range 10))) => 55

© Kenneth M. Anderson, 2015

20



map and reduce

map’ s primary structure is
e (map function collection)

It returns a new collection in which function was applied to each member
of the input collection

Likewise reduce’ s primary structure is
e (reduce function collection) or
e (reduce function 1initial-value collection)

It returns a single value that is the result of repeatedly combining elements of
the collection (in order) using the function (the function must support at
least two arguments)

« In the example on the previous slide, reduce first applied + to 1 and 2, it
then applied + to 3 and 3, then + to 6 and 4, etc.

© Kenneth M. Anderson, 2015 21



The Book’s First Example: Imperative/Mutable

- The book starts with this program for inspiration

e public int sum(int[] numbers) {
e int accumulator = 0;
e for (int n: numbers) {
e accumulator += n;
*}
* return accumulator;

*}

- This is an imperative program to sum up an array of integers. accumulator
IS a mutable variable. We use an imperative for loop to tell the computer
what to do

© Kenneth M. Anderson, 2015



The Book’s First Example: Functional/Recursive

e (defn recursive-sum [numbers]
e (1f (empty? numbers)
e (
e (+ (first numbers) (recursive-sum (rest numbers)))))

« This function is recursive in that it calls itself
It is functional in that there is no mutable state

« At each point in the call stack, numbers is bound to different values

« When numbers is empty, the recursion bottoms out and starts to
unwrap, calculating as it goes

« This example introduces three new functions: empty?, first, and rest

- first and rest are used to manipulate sequences (lists and vectors both
can act as sequences)

© Kenneth M. Anderson, 2015 23



The Book’s First Example: reduce

 As previously mentioned, functional programming will avoid recursion if it can;
as such, the next version of this example is

e (defn reduce-sum [numbers]
e (reduce (fn [acc x] (+ acc x)) 0 numbers))

 This uses the version of reduce where an initial value is also specified

- However, we don’t need to define a function to add two numbers together, we
already have one: +

« The final version of this function is thus

e (defn sum [numbers] (reduce + numbers))

- Note: + automatically knows how to handle empty collections and collections
consisting of just a single number (it uses its “identity” value of zero)

© Kenneth M. Anderson, 2015 24



The reward?

« How do we make our sum function concurrent?

* (ns sum.core (:requlre [clojure.core.reducers :as r]))
e (defn parallel-sum [numbers]
e (r/fold + numbers))

 This code pulls in a Clojure package called reducers. It aliases that package
to the symbol r (so we don’t have to type reducers all the time).

- The fold function is an implementation of reduce that (by default) breaks its
iInput collection into groups of 512 elements each and performs the reduce
calculation (in this case +) in parallel across all of the machine’s cores

e (def numbers (range 10000000)) ,; 10M
e (time (sum numbers)) ; “Elapsed time: 1031.619799 msecs”
e (time (parallel-sum numbers)); “Elapsed time: 493.867611 msecs”

« One call to a drop-in replacement of reduce and you’re done!

© Kenneth M. Anderson, 2015 25



The Book’s Second Example: Word Counts (l)

« The book’s second example returns to the Word Counts example

- i.e. count all of the words in the first 100K pages of Wikipedia articles

 Quick Intro to Maps (hash tables) in Clojure

(def counts {"apple" 2 "orange" 1})
(get counts "apple" 0) => 2

(get counts "banana" 0) => 0

(

(

assoc counts "banana" 1) => {"apple" 2 "orange" 1 “banana" 1}
assoc counts "apple" 3) => {"apple" 3 "orange" 1}

« Note that assoc returns a NEW map, the original map is immutable

- If you really wanted to save the new map, you would need to bind it to a
new symbol or rebind counts to the new value

e (def counts (assoc counts "banana" 1))

© Kenneth M. Anderson, 2015

26



The Book’s Second Example: Word Counts (ll)

- We now know enough about maps to write a function that can count how
many times we see a particular word in a sequence

(defn word-frequencies [words]
(reduce

(fn [counts word] (assoc counts word (inc (get counts word 0))))
{} words))

 Take this daunting expression a bit at a time!
- Define a function word-frequences that takes a sequence called words
- Call reduce on words passing in an empty map {} as the initial value

- We reduce with an anonymous function with two parameters; It gets the
current count associated with the current word, adds one to it, and sets
that as the new count for that word

 Turns out that Clojure already has a function that does this: frequencies

© Kenneth M. Anderson, 2015 27



The Book’s Second Example: Word Counts (Ill)

 Clojure has a concept known as a partially applied function

« Our book is about to use it to perform word counting in parallel, so we
need to understand it

» The basic concept is the following

A function takes n parameters

 You are in a situation where you have k parameters for the function now
(with k < n) and you’ll have the other (n-k) parameters later

 You ask Clojure to create a new function that has your k parameters “wired
iIN” as constants and takes as arguments the other (n-k) parameters later

* You move forward with this new function and call it with the other
parameters when the time comes

© Kenneth M. Anderson, 2015 28



The Book’s Second Example: Word Counts (V)

- Partially applied functions are perhaps easier to understand by examples

- Let’s pretend we want to be able to add 5 to any set of integers

e (def add-five (partial + D))

- The form (partial + 5) says, “create a new function in which 5 has been
hardwired in as +’s first argument”

« The new function add-five now acts just like + but it always has 5 as one of
its inputs

e (add-five) => 5
e (add-five 10) => 15
e (add-five 10 10 10 10) => 45

© Kenneth M. Anderson, 2015 29



The

Book’s Second

—xample: Word Counts (V)

« partial can be applied to any function

e (def add-five-to-everything (partial map add-five))

« Here we bind the add-five function to map’ s first parameter

« With the resulting function, we just need to pass in the collection that map
needs to operate on

e (add-five-to-everything [10 20 30 40 50 60 70 80 90])

e returns

(15 25 35 45 55 65 75 85 9)5)

© Kenneth M. Anderson, 2015 30



The

Book’s Second

—xample: Word Counts (VI)

- We need to understand four more Clojure functions/concepts

« re—seq: applies a regular expression to a string and produces a lazy
seqguence of all matches

- mapcat: takes a sequence of sequences and produces a single sequence
of all the subsequences concatenated

 merge-with: a function to combine multiple maps into a single map with
a rule as to how to combine duplicate map entires

« lazy sequences: Clojure can work with large sequences abstractly, only
creating those portions of the sequence that it needs

© Kenneth M. Anderson, 2015 31



re-seq

* re-seq is simple to understand

* You give it a sequence and a pattern. It looks for matches of the pattern
and produces a new sequence that contains each match

e (defn get—-numbers [text] (re-seqg #"\d+" text))

« Here we pass in a string and get back a sequence of all numbers found in
that string

e (get—-numbers "123 Boulder Ave 256 Dash Drive 5678 Pyramid Lane”)

e« returns ("123" "256" “5678")

© Kenneth M. Anderson, 2015

32



Mapcat

* You sometimes perform map operations that produce a sequence of
seguences

* (map get—-numbers ["123B456", "789T101112", ™131415G161718"])
e returns (("123"™ "456"™) ("789"™ "101112") ("131415"™ “161718M))

- Note that each element of the sequence is itself a sequence

« And sometimes you want that sequence of sequences to be “flattened” into a
single sequence consisting of all the members of the subsequences

e (flatten (map get—-numbers ["123B456", "789T101112", “131415G1l61718"]))
° returns ("123" "456™ "789" "101112" "131415" "161718")

« You can do this all in once step with mapcat
e (mapcat get—-numbers ["123B456", "789T101112", “131415G161718"])

* returns ("123" "456" "789" "101112" "131415" "161718")

© Kenneth M. Anderson, 2015

33



merge-with

« merge-with allows you to combine multiple maps into a single map

- It lets you specify what function is to be used to merge duplicate entries

- Given two maps
e (def countsl {:ken 10 ::max 20 :miles 10})

e (def counts2 {:ken 40 :max 30 :111jJa 50 :miles 40})

* You can merge them and add their scores together with

e (merge-with + countsl counts?2?)

e returns {:1ilja 50, :miles 50, :max 50, :ken 50}

© Kenneth M. Anderson, 2015 34



Lazy Sequences (|)

- Clojure does what it can to avoid bringing an entire sequence into memory

- It can instead pass around the “promise” of a sequence and then provide
its elements when they are needed

« If you type (range 0 10000000) into the REPL and hit return
« you may eventually see: OutOfMemoryError Java heap space

* Typing return means “display the result of evaluating this form”

- it wants to display the sequence for you, which means it has to create it
and then display it

- But, if you type (def lots-of-numbers (range 0 10000000)) it returns instantly

- That’s because the call to range is not evaluated until the elements of the
sequence are needed

© Kenneth M. Anderson, 2015 35



Lazy Sequences (lI)

» Lazy sequences work across any level of function calling

e (def lots-of-numbers-times-two (map (partial * 2) (range 0 10000000)))
* Here it looks like we are saying

- create a sequence with 10M members

« Use the map function to multiply each of those numbers by 2
 But, the calculation is not performed until we actually ask for the result

- (take 10 lots-of-numbers) =>(01234567 8 9)

- (take 10 lots-of-numbers-times-two) => (0246 8 10 12 14 16 18)

* In both cases, only the first ten members of the sequence are generated and
then operated on

« This is efficient and fast!

© Kenneth M. Anderson, 2015 36



Lazy Sequences (lI)

* You can even get to the end of the list without too much memory strain

e (take 10 (drop 9000000 lots-of-numbers-times-two))

 This says skip past the first 9M numbers of the sequence, then show me the
next ten; it tries to be efficient while doing this, garbage collecting those items
of the sequence that are no longer needed (it still requires SOME memory)

- If your JVM has a nice amount of memory, this operation is fast too

« Returns (18000000 18000002 18000004 18000006 18000008
18000010 18000012 18000014 1800001c 18000018)

* You just have to avoid asking for the ENTIRE sequence to be processed

- If you do, then Clojure can’t help it; it will bring the entire sequence into
memory and then operate on it. You’ll need to configure the JVM to have
enough memory to handle the large sequence

© Kenneth M. Anderson, 2015 37



The new Word Count program

- The new Word Count program consists of three source files

 pages.clj, words.clj, and core.clj

* In pages.clj is some functional XML parsing code that will make you lie in bed
awake, unable to sleep at night

* You can ignore it, it simply parses the XML file and gives us back the text
of each Wikipedia article as a string via a function called get-pages

» words.clj defines the following function

e (defn get-words [text] (re-seqg #"\w+" text))

* As we just learned, re-seq will apply the regular expression to the string that
represents the Wikipeida article and return each word in a sequence

- That leaves the code in core.clj to handle the rest of the counting logic

© Kenneth M. Anderson, 2015 38



Sequential Version

 To count all the words in a set of pages in a single thread, we use

e (defn count-words-sequential [pages]
e (frequencies (mapcat get-words pages)))

« This function

« calls get-words on the passed in set of pages to generate a sequence of
sequences containing the words for each page

- and uses mapcat to ensure that we get a single (lazy) sequence of all such
words

- It then calls frequencies to produce a map that for each word tracks how
many times it appears

© Kenneth M. Anderson, 2015 39



Sequential Version Performance

* To use it we call it like this:
e (def pages (take 100000 (get-pages "enwiki.xml")))
e (t1me (count (count-words-sequential pages)))

- | include a call to “count” to make Clojure actually perform the calculation
* since otherwise with lazy sequences, it can decide not to do anything

» plus the call to count allows me to see the output of the “time” function
which otherwise gets lost when a map with 1.74M entries prints out!

« The sequential version of the program on 100K pages averages 4.2 minutes

- CPU Utilization sits at just about 100% (i.e. it really is single threaded)

© Kenneth M. Anderson, 2015 40



Making it parallel: first attempt

e (defn count—-words-parallel [pages]
e (reduce
e (partial merge-with +)
e (pmap # (frequencies (get-words %)) pages)))
« Wow! Let’s take that step by step
« For each page, get its words, and calculate the frequencies
« Supposedly do all of that in parallel with pmap
 Then, reduce all of the maps into a single map using merge-with

- Supposedly do that sequentially at the end

* The average running time is 2.42 minutes, almost 50% faster

« One reason: not all that concurrent, CPU usage was ~300%

© Kenneth M. Anderson, 2015

41



Why is it slow (i.e. not as fast as we would like)?

* | said “supposedly” on the previous page
« because lazy sequences actually alter the specified behavior
- Rather than performing all of that code in parallel
* it was realizing the sequence, page by page, rather than all at once
- Furthermore, it was creating one page, then merging it with the final map
- and then creating the next page and merging it again

 This was similar to what we saw in Chapter 2 when our multiple consumer
threads were all sharing a single counts map

- and the program was slowed by contention around access to that map

© Kenneth M. Anderson, 2015 42



Making it parallel: second attempt

e (defn count-words [pages]
e (reduce
e (partial merge-with +)
e (pmap count-words-seq (partition-all 100 pages))))

- To fix this problem, we have to use the same approach we took in Chapter 2

» We need to allow multiple counts to occur in parallel and merge into the
final counts data structure only occasionally

 This version of count-words, uses partition-all to divide the 100K pages into
100 page chunks. count-words-sequential is used to count each of

those 100 pages in parallel using pmap, THEN we merge into the final counts

- Average run time 1.2 minutes with 500-1000% CPU
« 50% faster than the previous parallel attempt and 71% faster than the
single-threaded version

© Kenneth M. Anderson, 2015 43



Summary

- Today, we learned a lot about Clojure
* its syntax, data structures, and functions

- We then examined how “simple” it is to transform single threaded programs
to concurrent programs in the functional paradigm

- Typically, we swap a single threaded version of a function with a
concurrent version of that same function

» reduce with r/fold; map with pmap
- Concurrency never comes for free however

» The semantics of lazy sequences make taking advantage of full
parallelization difficult to achieve

- although without them, our program would have tried to load 100K
wikipedia articles into memory!

© Kenneth M. Anderson, 2015 44



