
© Kenneth M. Anderson, 2015

Threads and Locks, Part 2

CSCI 5828: Foundations of Software Engineering

Lecture 10 — 09/24/2015

1

© Kenneth M. Anderson, 2015

Goals

• Cover the material presented in Chapter 2 of our concurrency textbook

• In particular, selected material from Days 2 and 3

• java.util.concurrent

• ReentrantLock

• AtomicVariables

• Thread Pools

• Producer Consumer Example

• Warning: the book expects you to download a 10GB file that expands
to be 51 GB in order to run these examples!

• I’ve done this for you. (You’re welcome. 😃)

2

© Kenneth M. Anderson, 2015

What’s the easy way?

• Last lecture, we looked at “doing concurrency the hard way”

• So, what’s the easy way?

• We are not necessarily going to answer that question in this lecture

• But, we are going to look at the java.util.concurrency library to help make it
less painful to create concurrent software

• <http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
package-summary.html>

• As we move forward, we’ll look at other models and techniques that all
attempt to reduce the complexity associated with concurrent programming

• However, each new model/technique will introduce its own set of
accidental difficulties, such as having to learn Clojure. 😃

3

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html

© Kenneth M. Anderson, 2015

Synchronized Keyword => Intrinsic Locks

• We’ve been using the synchronized keyword to try to address the problems
we’ve been seeing in our concurrent programs so far

• The problem with this keyword is that it makes use of an inflexible lock that
our book calls intrinsic locks

• It is inflexible because

• A thread blocked on an intrinsic lock cannot be interrupted

• It’s all or nothing

• A thread blocked on an intrinsic lock cannot have a time out

• There’s only one type of intrinsic lock (reentrant) and only one way to
acquire it (with the synchronized keyword)

4

© Kenneth M. Anderson, 2015

java.util.concurrent.locks.ReentrantLock

• The ReentrantLock class from java.util.concurrent.locks allows us to gain the
benefit of fine-grained locking without having to use the synchronized
keyword

• To use them, you first instantiate a lock (and stash it somewhere)

• Lock lock = new ReentrantLock();

• Then you follow this pattern

• lock.lock();
• try {

• «use shared resource»
• } finally {

• lock.unlock();
• }

5

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/package-summary.html

© Kenneth M. Anderson, 2015

First benefit: Abstraction (I)

• Note this line of code carefully: Lock lock = new ReentrantLock();

• The concrete class is ReentrantLock. Our variable is of type Lock

• This gives us a nice abstraction with the following methods

• lock() — acquire the lock and block if needed

• lockInterruptibly() — acquire the lock, block if needed, allow
interruption

• newCondition() —bind a Condition to this lock

• tryLock() and tryLock(…) —acquire the lock without blocking or
with a timeout

• unlock() — release the lock

6

© Kenneth M. Anderson, 2015

First benefit: Abstraction

• Currently java.util.concurrent.locks provide us with two locks

• ReentrantLock and ReentrantReadWriteLock

• But the interface Lock allows us to write code that is not dependent on the
concrete classes and could change if better options are added in the future

• This abstraction also addresses the problem of having only one way to
acquire an intrinsic lock

• The Lock interface gives us four different ways of acquiring a lock

• blocking, non-blocking, with a time out, and with the option of being
interrupted

• This flexibility allows us to design concurrent systems with more powerful
constructs and avoid the problems we saw in Lecture 9

7

© Kenneth M. Anderson, 2015

Second Benefit: Thread Interruption

• The book has two programs to demonstrate the ability (or lack thereof) to
interrupt threads that are blocked on locks

• With an intrinsic lock, there’s no way to do it

• if a thread becomes blocked and the semantics of your program will
never allow it to become unblocked

• then it’s stuck until you kill the JVM

• With the Lock interface, you simply acquire it with the
lockInterruptibly() method and then Thread.interrupt()
behaves as you would expect

• DEMO

8

© Kenneth M. Anderson, 2015

Third Benefit: Timeouts (I)

• With the Lock interface, you have the option of calling tryLock()

• This is a nonblocking call that returns TRUE if the lock is acquired

• if (lock.tryLock()) {
• Lock acquired

• } else {
• Lock not acquired; act accordingly

• }

• You also have the option to specify a timeout (from nanoseconds to days!)

• if (lock.tryLock(50L, TimeUnit.SECONDS)) {
• Lock acquired

• } else {
• Timeout occurred; act accordingly

• }

9

© Kenneth M. Anderson, 2015

Third Benefit: Timeouts (II)

• The book provides an example of the Dining Philosophers program that
makes use of timeouts

• We don’t have to worry about acquiring chopsticks in the same order

• We instead adopt the following strategy

• acquire a lock on the left chopstick

• acquire a lock on the right chopstick using tryLock() with a timeout

• If that fails, release the lock on the left chopstick and try again

• This works BUT you can have a problem with LIVELOCK

• Live lock is the situation in which a program does not make progress
because the threads lock, time out, and then immediately lock again

• You spend your time dealing with locks and not performing work

10

© Kenneth M. Anderson, 2015

Note: Skipping Hand-over-Hand Locking

• The book has an example of using ReentrantLocks to allow multiple threads
to access a linked list at the same time

• including allowing multiple insertions to occur without damaging the
overall structure of the list

• and allowing iteration and other operations to occur in parallel on the list

• I’m going to skip this example as it is fairly low-level

• The key idea is how the locks are acquired as a thread moves through the
list

• You acquire a lock on node i and then try to acquire a lock on node i+1

• Once you have the lock on node i+1, you can release the lock on
node i

11

© Kenneth M. Anderson, 2015

Fourth Benefit: Condition Variables (I)

• Condition Variables are used when your thread’s logic involves waiting for an
event to occur (or a condition to become true) before it does its work

• If the event has not happened or the condition is false, we want the thread
to block and not consume the scheduler’s time

• Coding this logic can be quite challenging

• You may have a lot of threads waiting for the condition to become true

• As a result, you need a queue or a collection class to hold the threads
while they are waiting

• When the condition becomes true, you need a way to “wake up” the
threads that are waiting, and let them try to do their work

• Condition variables make coding this type of logic straightforward

12

© Kenneth M. Anderson, 2015

Fourth Benefit: Condition Variables (II)

• To work with a conditional variable, you follow this pattern

• ReentrantLock lock = new ReentrantLock();
• Condition condition = lock.newCondition();
• lock.lock()
• try {

• while (!«condition is true») { condition.await(); }
• «use shared resources»

• } finally { lock.unlock(); }

• The key to this pattern is that the variable and the condition are tied together

• The thread has to acquire the lock and then check the condition

• If the condition is false, it needs to wait. The call to await() blocks the
thread and unlocks the lock atomically, allowing other threads to access
the shared resources

13

© Kenneth M. Anderson, 2015

Fourth Benefit: Condition Variables (III)

• To work with a conditional variable, you follow this pattern

• ReentrantLock lock = new ReentrantLock();
• Condition condition = lock.newCondition();
• lock.lock()
• try {

• while (!«condition is true») { condition.await(); }
• «use shared resources»

• } finally { lock.unlock(); }

• The key to this pattern is that the variable and the condition are tied together

• If some other thread performs work that may have changed the condition, it
calls signal() or signalAll() on the condition. The former wakes up a single
thread that was blocked on the condition; the latter wakes them all up

• If signalAll() is used, all of the threads battle to reacquire the lock

14

© Kenneth M. Anderson, 2015

Fourth Benefit: Condition Variables (IV)

• To work with a conditional variable, you follow this pattern

• ReentrantLock lock = new ReentrantLock();
• Condition condition = lock.newCondition();
• lock.lock()
• try {

• while (!«condition is true») { condition.await(); }
• «use shared resources»

• } finally { lock.unlock(); }

• The key to this pattern is that the variable and the condition are tied together

• It is thus guaranteed that when await() returns, the thread once again has
acquired the lock. It then checks the condition to see if it is indeed true.

• If so, it performs its work and releases the lock. If not, it blocks once again
with a call to await()

15

© Kenneth M. Anderson, 2015

Fourth Benefit: Condition Variables (V)

• The book provides an example of using a Condition Variable to provide a
solution to the dining philosopher that

• a) avoids deadlock

• b) enables significantly more concurrency than previous solutions

• With the previous solutions, it was highly likely that only one philosopher was
able to eat at a time

• All the other philosophers have one chopstick and are waiting for the other
one to become available

• With this solution, at least two philosophers can be eating at one time. That
number goes up, if we increase the number of philosophers that are sitting
around the table

16

© Kenneth M. Anderson, 2015

java.util.concurrent.atomic

• The java.util.concurrent.atomic package contains classes that “support lock-
free thread-safe programming on single variables”

• They provide an easy way to implement single variables that need to be
shared between multiple threads and you want to avoid the use of locks to
enable maximum concurrency

• A common use case includes variables that need to be incremented or
decremented as events occur without “losing” any of those operations
due to race conditions

• Another use case is the ability to share object references across
threads, such that a change in the reference is seen by all threads

• No “memory barrier” issues, the change is guaranteed to be visible
in all threads

• The book updates the counter example using an AtomicInteger. DEMO

17

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/package-summary.html

© Kenneth M. Anderson, 2015

Thread Pools

• It takes time to create threads

• For servers, you want to avoid having to create threads on demand

• It will slow you down, if you have to wait for a thread to spin up each
time you receive a connection

• Code that creates threads on demand, typically do not have logic to
prevent creating one thread per request

• If that’s true and you get 1000s of requests, your code will blindly

create 1000s of threads, which will bring your machine to its knees

• A much better strategy is to use a thread pool

• You create all of the threads you are going to use up front

• When you need a request to be handled, you wrap it up in a Runnable and

hand it to the pool

• If a thread is available, it executes immediately; otherwise it waits

18

© Kenneth M. Anderson, 2015

Using Thread Pools

• The code to create a thread pool is straightforward

• public class Task implements Runnable …
• …
• int threadPoolSize = Runtime.getRuntime().availableProcessors() * 2;
• ExecutorService executor = Executors.newFixedThreadPool(threadPoolSize);
• …
• executor.execute(new Task(…));

• You figure out how large you want your thread pool to be

• You then create a new thread pool (called an ExecutorService in Java) and
pass in that size; when you need something done, call execute()

• How many threads should you allocate

• Are your tasks computationally intensive? => one thread per core

• Are your tasks mainly performing I/O? => lots of threads!

19

© Kenneth M. Anderson, 2015

Producer-Consumer Example (I)

• The book makes use of a large data file (51 GB!) to provide a real world
example of an application that can see performance gains with concurrency

• The file contains the latest set of articles on Wikipedia

• The programs operate on the first 100K pages contained within this file

• I also discovered that Java would sometimes run out of memory when
processing the XML file. To give the JVM more memory, I would execute
the program with this command

• env MAVEN_OPTS="-Xms2048m -Xmx4096m" mvn -q -e exec:java

• This gives the program 2 to 4 GB of memory to use if needed

20

© Kenneth M. Anderson, 2015

Producer-Consumer Example (II)

• The first program, WordCount, is a single threaded version of the program

• It shows how long it takes to parse the first 100K pages of the XML file

• On my machine, it averaged 2.69 minutes across several runs

• Nothing special about this program

• The heavy lifting occurs in the Pages.java class, which does the work of
parsing the XML file, looking for <page> tags

• it extracts the title and text of each page and ignores all other elements in
the XML file

• When it has a complete page, it stops and returns it to the main routine,
which then counts the words on that page

• I modified the program to print the top 25 terms that it finds in the first 100K
pages and to print out the time it took to parse the 100K pages in minutes.

21

© Kenneth M. Anderson, 2015

Producer-Consumer Example (III)

• The first attempt to make this program concurrent adopts a typical producer/
consumer architecture

• The parser is in one thread, sticking pages into a bounded queue

• 100 pages max

• The consumer is in another thread pulling pages from the queue and

counting them

• A “poison pill” page is inserted into the queue when the parser is done

• The consumer processes pages until it finds the poison pill and then
it terminates

• The program now averages 2.45 minutes per run; this is a (slight)
improvement but not by much. top doesn’t report much in the way of
concurrency, the CPU utilization is only 112% for most of the run; the queue
provides some separation of work but not by much

22

© Kenneth M. Anderson, 2015

What’s taking so long?

• What about queue size? Let’s try increasing the queue’s size from 100 to
1000? Maybe the producer got blocked on a full queue?

• No impact, processing time is still 2.42 minutes (on average)

• Let’s determine if the producer is the problem

• Let’s modify the consumer to pull pages off the queue without counting
them

• It takes about 18.3 seconds to parse 100 thousands pages

• So, in order to speed this program up, we need to see if we can make the
counting side (i.e. consumers) of the equation more concurrent

23

© Kenneth M. Anderson, 2015

The new approach

24

ParserXML

Queue

Counter

Counter

Counter

Counts

© Kenneth M. Anderson, 2015

Producer-Consumer Example (IV)

• We need to create multiple consumers and have them work together to pull
pages off the queue and count the words in parallel

• The problem here is that we will have a shared resource between the
consumers => the hash table that stores the counts for each word

• We will protect the hash table with a static lock shared by all consumers

• How did we do?

• Two threads => 5 minutes; ~160% CPU utilization

• Three threads => 10 minutes; ~180% CPU utilization

• There’s too much contention for the lock that guards the hash table, we’re
seeing a slow down not a speed up!

25

© Kenneth M. Anderson, 2015

Producer-Consumer Example (V)

• Since synchronization is slowing us down, perhaps we can avoid explicit
locking and use a hash table designed for concurrent access

• java.util.concurrent.ConcurrentHashMap may do the trick!

• This data structure tries to allow parallel reads and writes on the hash table
without explicit locking

• To do this correctly, however, in the presence of multiple threads, we have
to adopt a different style of use

• When we have an update, we loop until one of these conditions is true

• The map has not seen this word before and we set the count to 1

• The map has seen this word and we successfully increment by 1

• To do this, we use putIfAbsent() and replace() rather than put()

26

© Kenneth M. Anderson, 2015

Producer-Consumer Example (VI)

• The insertion code into the ConcurrentHashMap looks like this

private void countWord(String word) {

while (true) {

Integer currentCount = counts.get(word);

if (currentCount == null) {

if (counts.putIfAbsent(word, 1) == null) {

break;

}

} else if (counts.replace(word, currentCount, currentCount + 1)) {

break;

}

}

}

• The loop is there since at any point some other thread may update counts out
from underneath us!

• e.g. currentCount == null, but putIfAbsent() != null

27

© Kenneth M. Anderson, 2015

Producer-Consumer Example (VII)

• The results?

• 2 consumers: 3.4 minutes, 210% CPU utilization

• 3 consumers: 2.86 minutes, 330% CPU utilization

• 4 consumers: 3 minutes, 400% CPU utilization

• 8 consumers: 4.87 minutes, 520% CPU utilization

• We can get some speed up, but we still run into contention issues

• We’re seeing livelock in action, the threads are active (leading to higher
CPU utilization) but they keep failing to update the hash table and so they
are spinning around the loop, not making progress

• To get faster speedups, we need to reduce the contention close to zero

28

© Kenneth M. Anderson, 2015

Producer-Consumer Example (VIII)

• The final solution is to have each consumer thread maintain its own counts
separate from all other threads

• We can use a regular HashTable; no need for locks since there will be
no contention with this data structure; one HashTable per Consumer

• When the consumer is done counting words for its pages, it then merges
its counts into a shared ConcurrentHashMap in the same way as the
previous solution

• There might be some contention near the end of the run as each
Consumer performs its merge, but for most of the run, there will be NO
contention while counting

29

© Kenneth M. Anderson, 2015

Producer-Consumer Example (IX)

• The results?

• 2 consumers: 77 SECONDS, 224% CPU utilization

• 3 consumers: 53.8 SECONDS, 350% CPU utilization

• 4 consumers: 42.6 SECONDS, 500% CPU utilization

• 8 consumers: 24.6 SECONDS, 850% CPU utilization

• We don’t see a strict linear speed-up with increased cores BUT

• this solution (with 8 threads) is ~9x faster than the single threaded version!

• this solution (with 8 threads) is ~10x faster than the previous version

• Not bad!

30

© Kenneth M. Anderson, 2015

There’s more!

• We’ve covered most of the major classes of functionality hiding in
java.util.concurrent

• BUT there is still more to see

• Futures

• CountdownLatch and CyclicBarrier

• ForkJoinPool (work stealing)

• We’ll return to java.util.concurrent later in the semester

• For now, we’ll forge on and look at the functional approach to concurrency,
the actor model, and more

31

© Kenneth M. Anderson, 2015

Summary

32

• We reviewed a wide range of functionality provided by the java.util.concurrent
library

• ReentrantLock

• AtomicVariables

• Thread Pools

• Producer Consumer Example

• These constructs help to reduce the sting of programming with Threads and
Locks and make it easier to write and reason about concurrent programs

