
© Kenneth M. Anderson, 2014

Lambda Architecture

CSCI 5828: Foundations of Software Engineering

Lecture 29 — 12/09/2014

1

© Kenneth M. Anderson, 2014

Goals

• Cover the material in Chapter 8 of the Concurrency Textbook

• The Lambda Architecture

• Batch Layer

• MapReduce (e.g. Hadoop, Spark)

• Speed Layer

• Stream Processing (e.g. Storm, Spark Streaming)

2

© Kenneth M. Anderson, 2014

Lambda Architecture (I)

• The Lambda Architecture refers to an approach for performing “big data”
processing developed by Nathan Marz

• from his experiences at BackType and Twitter

• Everyone has their own definition of “big”

• gigabytes and terabytes for small research teams and companies

• terabytes and petabytes for medium and large organizations

• Google and Microsoft have petabytes of map data

• exabytes for truly data-intensive organizations

• Facebook reports having to store 500 TB of new information PER DAY

• and zettabytes and yottabytes may be in our future some day!

3

© Kenneth M. Anderson, 2014

Lambda Architecture (II)

• Everything changes when working at scale

• many of your assumptions fall over

• many of the techniques that you are comfortable suddenly reveal that they
are not scalable

• I enjoy giving students their first 60 GB file to work on

• In my research on Project EPIC, we have data sets that are hundreds of
gigabytes in size

• you can’t bring the entire set into memory (at least not on a single
machine)

• you can’t easily store our data sets accumulated over the past five years
on a single machine

4

© Kenneth M. Anderson, 2014

Lambda Architecture (III)

• In a typical data-intensive system, the goal is to

• while true

• collect and/or generate raw data

• store that data in an effective and efficient way

• process it to answer questions of some form

• use the answers to determine what new questions you have

• use those questions to determine what new data you need

• In our coverage of the Lambda Architecture, we will be looking primarily at
technologies that aid the “process” stage above

• Additional details can be found in Marz’s book on Big Data

5

http://www.manning.com/marz/

© Kenneth M. Anderson, 2014

Lambda Architecture (IV)

• In processing data to answer questions, the lambda architecture advocates a
two-prong approach

• For large data sets, where the processing can take a significant amount of
time (hours) => the batch layer using techniques like MapReduce

• For more recent generated data, process it as it arrives => the speed layer
using techniques like stream processing

• In both cases, these technologies will make use of clusters of machines
working together to perform the analysis

• in this way

• data is distributed/replicated across machines

• AND computation is distributed across machines and occurs in parallel

6

© Kenneth M. Anderson, 2014

Lambda Architecture (V)

7

Raw
Data

Batch Layer

Speed Layer

Answers
and

Information

Job Job Job Job Job Job

© Kenneth M. Anderson, 2014

Lambda Architecture (VI)

• For the batch layer, we will make use of techniques that can process large
sets of data using “batch jobs”

• MapReduce, as implemented by Hadoop, has been the 900lb gorilla in this
space for a long time

• it is now being challenged by other implementations (such as Spark)

• For the speed layer, we will make use of techniques that can process
streaming data quickly

• The exemplar in this space is Storm, a streaming technology developed at
Twitter

• Other techniques useful in this space include message queueing
systems like RabbitMQ and ActiveMQ

8

© Kenneth M. Anderson, 2014

Map Reduce

• The functions map, reduce, and filter have cropped up a lot this semester

• They represent a fundamental approach to processing data that (via
Hadoop) has been shown to apply to extremely large data sets

• map: given an array and a function, create a new array that

• for each element

• contains the results of the function

• applied to the corresponding element of the original array

• filter: given an array and a boolean function, create a new array that

• consists of all elements of the original for which the function returns true

• reduce: given an array, an initial value, and a binary function

• return a single value that is the accumulation of the initial value and the
elements of the original array as computed by the function

9

© Kenneth M. Anderson, 2014

Examples: map, filter, and reduce

• In the subsequent examples, I present examples of map, filter, and reduce
that apply to arrays of integers

• With map, the supplied function has signature: Int -> Int

• With filter, the supplied function has signature: Int -> Bool

• With reduce, the supplied function has signature: (Int, Int) -> Int

• But the technique is generic with respect to type

• For an array of elements of type T

• the supplied function for map has signature: T -> U

• the supplied function for filter has signature: T -> Bool

• the supplied function for reduce has signature: (R, T) -> R

10

© Kenneth M. Anderson, 2014

Example: map (I)

function map(values, f) {
 var results = [];
 for (var i = 0; i < values.length; i++) {
 results.push(f(values[i]));
 }
 return results;
}

• Here’s a Javascript implementation of map

• Create a new array

• Apply the function f to each element of the input array (values)

• and append (push in Javascript) the result to the output array

11

© Kenneth M. Anderson, 2014

Example: map (II)

function triple(x) {
 return x * 3;
}

var data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

console.log(map(data, triple))

• Here’s an example of using our Javascript version of map

• Define a function that takes an integer and produces an integer

• Create an array of integers

• Call map passing the input array and function; print the result

12

© Kenneth M. Anderson, 2014

Example: filter (I)

function filter(values, f) {
 var results = [];
 for (var i = 0; i < values.length; i++) {
 if (f(values[i])) {
 results.push(values[i]);
 }
 }
 return results;
}
• Here’s a Javascript implementation of filter

• Create a new array

• Apply the function f to each element of the input array (values)

• If true, append the element to the output array

13

© Kenneth M. Anderson, 2014

Example: filter (II)

function isEven(x) {
 return (x % 2) == 0;
}

var data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

console.log(filter(data, isEven))

• Here’s an example of using our Javascript version of filter

• Define a function that takes an integer and produces a boolean

• Create an array of integers

• Call filter passing the input array and function; print the result

14

© Kenneth M. Anderson, 2014

Example: reduce (I)

function reduce(values, initial, f) {
 var result = initial;
 for (var i = 0; i < values.length; i++) {
 result = f(result, values[i]);
 }
 return result;
}
• Here’s a Javascript implementation of reduce

• Set result equal to the initial value

• Loop through the input array

• Update result to be the output of the function applied to result and a[i]

• Return the final result

15

© Kenneth M. Anderson, 2014

Example: reduce (II)

function sum(total, value) {
 return total + value;
}

var data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

console.log(reduce(data, 0, sum))

• You can even combine them!

• console.log(reduce(filter(map(data, triple), isEven), 0, sum))

16

© Kenneth M. Anderson, 2014

Reduce is very powerful

• In some languages, you can implement map and filter using reduce

• func rmap<T, U>(xs: [T], f: T -> U) -> [U] {
• return reduce(xs, []) { result, x in result + [f(x)] }

• }

• func rfilter<T>(xs: [T], check: T -> Bool) -> [T] {
• return reduce(xs, []) {

• result, x in return check(x) ? result + [x] : result }
• }

• This is an example written in Swift, a new language created by Apple

17

© Kenneth M. Anderson, 2014

MapReduce and Hadoop (I)

• Hadoop applies these functions to data at large scale

• You can have thousands of machines in your cluster

• You can have petabytes of data

• The Hadoop file system will replicate your data across the nodes

• The Hadoop run-time will take your set of map and reduce jobs and
distribute across the cluster

• It will manage the final reduce process and ensure that all results end
up in the output file that you specify

• It does all of this and will complete jobs even if worker nodes go down
taking out partially completed tasks

18

© Kenneth M. Anderson, 2014

MapReduce and Hadoop (II)

• Since I showed that map and filter are special cases of reduce, the
overarching framework could have been called ReduceReduce

• but that doesn’t sound as good

• But that’s just to say that you should be confident that the MapReduce
framework provides you with a sufficient range of functionality to perform a
wide range of analysis and data manipulation tasks

19

© Kenneth M. Anderson, 2014

MapReduce and Hadoop (III)

• Hadoop’s basic mode of operation is transformation

• A function (either map or reduce) will receive a document of key-value
pairs

• The result is a set of new documents with key-value pairs

• In all cases, you are transforming from one set of documents to another

• Or more generically, one type to another type

• Depending on your algorithm, one input document can produce multiple
output documents

20

© Kenneth M. Anderson, 2014

MapReduce and Hadoop (IV)

• The difference between map and reduce in Hadoop

• map functions will receive a single document to transform

• As I indicated, it will then produce zero or more output documents

• each with a particular key; the key does not have to be unique

• reduce functions will receive

• a key and a set of documents that all had that key

• It will then typically produce a single document with that key

• in which all of the documents have had their values combined in
some way

• So, if a map phase generates millions of documents across 26 different keys

• then its reduce phase may end producing 26 final documents

21

© Kenneth M. Anderson, 2014

Hadoop Conceptual Structure

22

output

Mapper

Mapper

Mapper

Mapper

input

Reducer

Reducer

Reducer

Figure 19—Hadoop high-level data flow

size would be 64 MB) and sends each split to a single mapper. The mapper
outputs a number of key/value pairs, which Hadoop then sends to the reducers.

The key/value pairs from a single mapper are sent to multiple reducers. Which
reducer receives a particular key/value pair is determined by the key—Hadoop
guarantees that all pairs with the same key will be processed by the same
reducer, no matter which mapper generated them. For obvious reasons, this
is commonly called the shuffle phase.

Hadoop calls the reducer once for each key, with a list of all the values asso-
ciated with it. The reducer combines these values and generates the final
output (which is typically, but not necessarily, also key/value pairs).

So much for the theory—let’s see it in action by creating a Hadoop version of
the Wikipedia word-count example we’ve already seen in previous chapters.

Counting Words with Hadoop
We’re going to start with a slightly simplified problem—counting the number
of words in a collection of plain-text files (we’ll see how to extend this to
counting the words in a Wikipedia XML dump soon).

report erratum • discuss

Day 1: MapReduce • 227

Prepared exclusively for Ken Anderson

Shuffle Phase
Hadoop guarantees that all
mapper outputs associated
with the same key will go
to the same reducer

This is called the shuffle
phase, while it routes
documents to reducers.

Image from our
concurrency text book

© Kenneth M. Anderson, 2014

Powerful but at a cost

• MapReduce and Hadoop are powerful but they come at a cost

• latency

• These jobs are NOT quick

• It takes a lot of time to “spin up” a Hadoop job

• If your analysis requires multiple MapReduce jobs, you have to “take the
hit” of that latency across all such jobs

• Spark tries to fix exactly this issue with its notion of an RDD

• But if you have to apply a single algorithm across terabytes or petabytes of
data, it will be hard to beat Hadoop once the price of that overhead is paid

23

© Kenneth M. Anderson, 2014

Word Count in Hadoop (I)

• The book presents an example of using Hadoop to count the words in a
document;

• (as I mentioned earlier in the semester, this is the “hello world” example of
big data)

24

© Kenneth M. Anderson, 2014

Word Count in Hadoop (II)

• The high-level design is this:

• Input document is lines of text

• Hadoop will split the document into lines and send each line to a
mapper

• The mapper receives an individual line and splits it into words

• For each word, it creates an output document: (word, 1)

• e.g. (“you”, 1), (“shall”, 1), (“not”, 1), (“pass”, 1)

• These output documents get shuffled and are passed to the reducer like
this: (word, [Int]); e.g. (“shazam!”, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

• The reducer takes this as input and produces (word, <sum>)

• e.g. (“shazam!”, 10)

25

© Kenneth M. Anderson, 2014

Word Count in Hadoop (III)

• There may be multiple phases of reduce depending on how many nodes are
in your cluster

• Depending on the implementation of MapReduce

• Each node may do their reduce phase first and then the implementation
would need to combine (i.e. reduce) the output documents on each
node with each other to produce the final output

• OR

• During the shuffle phase, we make sure that all documents with the
same key go to the same reducer, even if that means sending the
output document of the map phase on one machine as input to the
reduce phase on a second machine

26

© Kenneth M. Anderson, 2014

Word Count in Hadoop (IV)

• The code for our map phase looks like this

27

Our mapper will process text a line at a time, break each line into words and
output a single key/value pair for each word. The key will be the word itself,
and the value will be the constant integer 1. Our reducer will take all the
key/value pairs for a given word and sum the values, generating a single
key/value pair for each word, where the value is a count of the number of
times that word occurred in the input:

one potato
two potato

three potato
four

six potato
seven potato

more

("one", 1)
("potato", 1)

("two", 1)
("potato", 1)

...

("potato", 1)
("six", 1)

("potato", 1)
...

("one", 1)
("potato", 6)

("two", 1)
("three", 1)

...

Map

Reduce

Figure 20—Counting words with Hadoop

The Mapper

Our mapper, Map, extends Hadoop’s Mapper class, which takes four type
parameters—the input key type, the input value type, the output key type,
and the output value type:

LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
public static class Map extends Mapper<Object, Text, Text, IntWritable> {Line 1

private final static IntWritable one = new IntWritable(1);-
-

public void map(Object key, Text value, Context context)-

throws IOException, InterruptedException {5
-

String line = value.toString();-

Iterable<String> words = new Words(line);-

for (String word: words)-

context.write(new Text(word), one);10

}-

}-

Chapter 8. The Lambda Architecture • 228

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2014

Word Count in Hadoop (V)

• The code for our reduce phase looks like this

28

Hadoop uses its own types to represent input and output data (we can’t use
plain Strings and Integers). Our mapper handles plain text data, not key/value
pairs, so the input key type is unused (we pass Object) and the input value
type is Text. The output key type is also Text, with a value type of IntWritable.

The map() method will be called once for each line of the input split. It starts
by converting the line to a plain Java String (line 7) and then splits the String
into words (line 8). Finally it iterates over those words, generating a single
key/value pair for each of them, where the key is the word and the value the
constant integer 1 (line 10).

The Reducer

Our reducer, Reduce, extends Hadoop’s Reducer class. Like Mapper, this also takes
type parameters indicating the input and output key and value types (in our
case, Text for both key types and IntWritable for both value types):

LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val: values)

sum += val.get();
context.write(key, new IntWritable(sum));

}
}

The reduce() method will be called once for each key, with values containing a
collection of all the values associated with that key. Our mapper simply sums
the values and generates a single key/value pair associating the word with
its total occurrences.

Now that we’ve got both our mapper and our reducer, our final task is to
create a driver, which tells Hadoop how to run them.

The Driver

Our driver is a Hadoop Tool, which implements a run() method:

LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
public class WordCount extends Configured implements Tool {Line 1

-

public int run(String[] args) throws Exception {-

Configuration conf = getConf();-

Job job = Job.getInstance(conf, "wordcount");5

job.setJarByClass(WordCount.class);-

job.setMapperClass(Map.class);-

job.setReducerClass(Reduce.class);-

report erratum • discuss

Day 1: MapReduce • 229

Prepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2014

Word Count in Hadoop (VI)

• The main program looks like this

29

Hadoop uses its own types to represent input and output data (we can’t use
plain Strings and Integers). Our mapper handles plain text data, not key/value
pairs, so the input key type is unused (we pass Object) and the input value
type is Text. The output key type is also Text, with a value type of IntWritable.

The map() method will be called once for each line of the input split. It starts
by converting the line to a plain Java String (line 7) and then splits the String
into words (line 8). Finally it iterates over those words, generating a single
key/value pair for each of them, where the key is the word and the value the
constant integer 1 (line 10).

The Reducer

Our reducer, Reduce, extends Hadoop’s Reducer class. Like Mapper, this also takes
type parameters indicating the input and output key and value types (in our
case, Text for both key types and IntWritable for both value types):

LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val: values)

sum += val.get();
context.write(key, new IntWritable(sum));

}
}

The reduce() method will be called once for each key, with values containing a
collection of all the values associated with that key. Our mapper simply sums
the values and generates a single key/value pair associating the word with
its total occurrences.

Now that we’ve got both our mapper and our reducer, our final task is to
create a driver, which tells Hadoop how to run them.

The Driver

Our driver is a Hadoop Tool, which implements a run() method:

LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
public class WordCount extends Configured implements Tool {Line 1

-

public int run(String[] args) throws Exception {-

Configuration conf = getConf();-

Job job = Job.getInstance(conf, "wordcount");5

job.setJarByClass(WordCount.class);-

job.setMapperClass(Map.class);-

job.setReducerClass(Reduce.class);-

report erratum • discuss

Day 1: MapReduce • 229

Prepared exclusively for Ken Anderson

job.setOutputKeyClass(Text.class);-

job.setOutputValueClass(IntWritable.class);10

FileInputFormat.addInputPath(job, new Path(args[0]));-

FileOutputFormat.setOutputPath(job, new Path(args[1]));-

boolean success = job.waitForCompletion(true);-

return success ? 0 : 1;-

}15
-

public static void main(String[] args) throws Exception {-

int res = ToolRunner.run(new Configuration(), new WordCount(), args);-

System.exit(res);-

}20

}-

This is mostly boilerplate, simply informing Hadoop of what we’re doing. We
set the mapper and reducer classes on lines 7 and 8, and the output key and
value types on lines 9 and 10. We don’t need to set the input key and value
type, because Hadoop assumes by default that we’re processing text files.
And we don’t need to independently set the mapper output or reducer input
key/value types, because Hadoop assumes by default that they’re the same
as the output key/value types.

Next we tell Hadoop where to find the input data and where to write the output
data on lines 11 and 12, and finally, we start the job and wait for it to complete
on line 13.

Now that we’ve got a complete Hadoop job, all that remains is to run it on
some data.

Running Locally

We’ll start by running locally. This won’t give us any of the benefits of paral-
lelism or fault tolerance, but it does give us a way to check that everything’s
working before the additional effort and expense of running on a full cluster.

First we’ll need some text to process. The input directory contains two text files
comprising the literary masterpiece we’ll be analyzing:

LambdaArchitecture/WordCount/input/file1.txt
one potato two potato three potato four

LambdaArchitecture/WordCount/input/file2.txt
five potato six potato seven potato more

Not exactly gigabytes of data, to be sure, but there’s enough there to verify
that the code works. We can count the text in these files by building with mvn
package and then running a local instance of Hadoop with this:

$ hadoop jar target/wordcount-1.0-jar-with-dependencies.jar input output

Chapter 8. The Lambda Architecture • 230

report erratum • discussPrepared exclusively for Ken Anderson

© Kenneth M. Anderson, 2014

MapReduce is a Generic Concept

• Many different technologies can provide implementations of map and reduce

• We’ve already seen this with respect to functional programming languages

• But, MapReduce functionality (as in the Hadoop context) is starting to appear
in many different tools

• similar to the way that support for manipulating and searching text via
regular expressions appears in many different editors

• In particular, CouchDB and MongoDB provide MapReduce functionality

• I used MongoDB’s MapReduce functionality to find the unique users of a
Twitter data set

• the result of the calculation is that each output document represents a
unique user and contains useful information about that user

30

© Kenneth M. Anderson, 2014

Twitter Example (I)

• In the unique users example, the high level design is the following

• The input data set is a set of tweets stored in MongoDB

• Each tweet is stored as a JSON document of attribute-value pairs

• The mapper produces an output document with the following fields

• names => an array of screen names for this user

• tweets => an array of tweet ids for this user

• name_count => number of names

• tweet_count => number of tweets

• That document has as its key, the unique user id for that user

31

© Kenneth M. Anderson, 2014

Twitter Example (II)

• The reducer takes a set of mapper-produced documents that all have the
same key (i.e. user id) and

• Combines all screen names and tweets and updates the counts as
appropriate

• DEMO

32

© Kenneth M. Anderson, 2014

Summary

• Introduced the first part of the Lambda Architecture

• Covered MapReduce

• And showed examples in Hadoop and MongoDB

33

© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 30: Lambda Architecture, Part Two

34

